
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial

Aut
ho

r's

pe
rs

on
al

co

py

J. Parallel Distrib. Comput. 67 (2007) 659– 673
www.elsevier.com/locate/jpdc

A multi-dimensional scheduling scheme in a Grid computing environment

B.T. Benjamin Khooa, Bharadwaj Veeravallia,∗, Terence Hungb, C.W. Simon Seec

aComputer Networks and Distributed Systems (CNDS) Laboratory, Department of Electrical and Computer Engineering, National University of Singapore,
4 Engineering Drive 3, Singapore 117576, Singapore

bInstitute of High-Performance Computing (IHPC), Software and Computing Division, Singapore 117528, Singapore
cAsia Pacific Science and Technology Center, Sun Microsystems, Singapore 639798, Singapore

Received 1 February 2006; received in revised form 30 November 2006; accepted 31 January 2007
Available online 20 February 2007

Abstract

In this paper, we propose a novel distributed resource-scheduling algorithm capable of handling multiple resource requirements for jobs that
arrive in a Grid computing environment. In our proposed algorithm, referred to as multiple resource scheduling (MRS) algorithm, we take into
account both the site capabilities and the resource requirements of jobs. The main objective of the algorithm is to obtain a minimal execution
schedule through efficient management of available Grid resources. We first propose a model in which the job and site resource characteristics
can be captured together and used in the scheduling algorithm. To do so, we introduce the concept of a n-dimensional virtual map and resource
potential. Based on the proposed model, we conduct rigorous simulation experiments with real-life workload traces reported in the literature to
quantify the performance. We compare our strategy with most of the commonly used algorithms in place on performance metrics such as job
wait times, queue completion times, and average resource utilization. Our combined consideration of job and resource characteristics is shown
to render high-performance with respect to above-mentioned metrics in the environment. Our study also reveals the fact that MRS scheme has
a capability to adapt to both serial and parallel job requirements, especially when job fragmentation occurs. Our experimental results clearly
show that MRS outperforms other strategies and we highlight the impact and importance of our strategy.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Grid computing; Scheduling; Parallel processing time; Multiple resources; Load distribution

1. Introduction

With recent technological advances in computing, the cost of
computing has greatly decreased, bringing powerful and cheap
computing power into the hands of more individuals in the form
of commodity-off-the-shelf (COTS) desktops and servers. To-
gether with the increasing number of high bandwidth networks
provided at a lowered cost, use of these distributed resources
as a powerful computation platform has increased. Vendors
such as the IBM [24,9], the HP [8] and the Sun Microsystems
[27] have all introduced clusters that would effectively lower
the cost-per-gigaflop of processing while maintaining high per-
formance using locally distributed systems. The concept of
Grid computing [5] has further pushed the envelope of dis-
tributed computing, moving traditionally local resources such as

∗ Corresponding author. Fax: +65 67791103.
E-mail address: elebv@nus.edu.sg (B. Veeravalli).

0743-7315/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2007.01.008

memory, disk and CPUs to a wide area distributed comput-
ing platform sharing these very same resources. Consequently,
what had used to be optimal in performance for a local cluster
has suddenly become a serious problem when high latency net-
works, uneven resource distributions, and low node reliability
guarantees, are added into the system. Scheduling strategies for
these distributed systems are also affected as more resources
and requirements have to be addressed in a Grid system. The
lack of centralized control in Grids has also resulted in fail-
ure of traditional scheduling algorithms where different poli-
cies might hinder the sharing of specific resources. This leads
to a lack of robust scheduling algorithms that are available for
Grids.

In this paper, we propose a novel scheme that considers
various resource requirements of jobs while taking into con-
sideration the distributed computation environment where the
job resides in. The technique we propose shall then devise an
allocation, which can be used to provide what it believes as

Aut
ho

r's

pe
rs

on
al

co

py

660 B.T.B Khoo et al. / J. Parallel Distrib. Comput. 67 (2007) 659–673

the most efficient job execution sequence to handle the jobs.
Below we summarize our contributions in this paper.

1.1. Our contributions

We propose a novel methodology referred to as multiple
resource scheduling (MRS) strategy that would enable jobs
with multiple resource requirements to be run effectively on a
Grid computing environment (GCE). A job’s resource depen-
dencies in computational, data requirements and communica-
tion overheads will be considered. A parameter called Resource
Potential is also introduced to ease in situations where in inter-
resource communication relations need to be addressed. An n-
dimensional resource aggregation and allocation mechanism is
also proposed. The resource aggregation index, derived from the
n-dimensional resource aggregation method, and the Resource
Potential sufficiently allows us to mathematically describe the
relationship of resources that affects general job executions in a
specific dimension into a single index. Each dimension is then
put together to form an n-dimensional map that allows us to
identify the best allocation of resources for the job. The num-
ber of dimensions considered depends on the number of job
related attributes we wish to schedule for.

The combination of these two methodologies allows MRS
to be able to respond more suitably in the execution of ap-
plications that are both highly parallel as well as serial in na-
ture in GCEs. The performance of such a scheduling algorithm
promises respectable waiting times, response times, as well as
an improved level of utilization across the entire GCE.

As dimensional indices are computed at the resource sites
itself, this vastly improves the distributed control of the Grid
over resources. It additionally unloads scheduling overheads
due to resource comparison at the main scheduling server. This
design also paves way in designing a distributed scheduling
system as each additional resource is responsible for its own
sharing of resources and computation of indexes. This naturally
allows the MRS to be possibly implemented easily as both a
central and distributed scheduling systems. In this paper, we
restrict the scope of simulation to a central scheduling design
of the MRS. However, we will present a discussion how a
distributed MRS system can be easily achieved.

We evaluate the performance of our proposed strategy in two
dimensions, namely computation and data, while addressing
requirements of resources such as, FLOPS, RAM, Disk space,
and data. We study our strategy with respect to several influenc-
ing factors that quantify the performance. Our study shows that
MRS outperforms most of the commonly available schemes in
place for a GCE.

1.2. Organization of paper

The organization of this paper is as follows. In Section 2,
we describe the GCE and in Section 3 we introduce our MRS
strategy and algorithm. Section 4 describes the system design
and implementation of the system. We also present our rigor-
ous performance evaluation and discuss the significance of the

results in this section. In Section 5, we introduce the relevant
literature in this domain and highlight some key works in this
area. Section 6 concludes the paper.

2. Grid environment model

In this section, we define the GCE in which the MRS strategy
was designed. We first clearly identify certain key characteris-
tics of resources as well as the nature of jobs. A GCE comprises
many diverse machine types, disks/storage, and networks. In
our resource environment, we consider the following:

1. Resources can be made up of individual desktops, servers,
clusters or large multi-processor systems. They can provide
varying amounts of CPU FLOPs, RAM, Harddisk space
and bandwidth. Communication to individual nodes in the
cluster will be done through a local resource manager (LRM)
such as SGE, PBS, or LSF. We assume that the LRM will
dispatch a job immediately when instructed by the Grid
meta-scheduler (GMS). The GMS thus treats all resources
exposed under a single LRM as a single resource. We find
this assumption to be reasonable as GMS usually does not
have the ability to directly contact resources controlled by
the LRM.

2. Changes in any shared resource at a site is known instanta-
neously to all locations throughout the GCE. Without loss
of generality we assume that every node in the GCE is able
to execute all jobs when evaluating the performance of the
MRS strategy.

3. Each computation resource is connected to each other
through different bandwidths which are possibly asymmet-
rical.

4. All resources have prior agreement to participate on the Grid.
From this, we safely assume a trusted environment whereby
all resources shared by sites are accessible by every other
participating node in the Grid if required to do so.

5. In our simulations, we assume that the importance of the
resources with respect to each other is identical.

6. The capacity for computation in a CPU resource is pro-
vided in the form of GFlops. While we are aware that this
is not completely representative of a processor’s computa-
tional capabilities, it is at current one of the most basic mea-
sure of performance on a CPU. Therefore, this is used as a
gauge to standardize the performance of different CPU ar-
chitectures in different sites. However, the actual units used
in the MRS strategy does not require actual performance
measures, rather, it depends on relative measures to the job
requirements. We will show how it is done in later sections.

The creation of the job environment is done through the in-
vestigation of the workload models available in the Parallel
Workload Archive Models [18] and the Grid workload model
available in [25]. The job characteristics are thus defined by the
set of parameters available in these models and complemented
with additional resource requirements that are not otherwise
available in these two models. Examples of these resources in-
clude information such as job submission locations and data
size required for successful execution of the task. In our job

Aut
ho

r's

pe
rs

on
al

co

py

B.T.B Khoo et al. / J. Parallel Distrib. Comput. 67 (2007) 659 – 673 661

execution environment, we assume the following:

1. Resource requirement for a job does not change during ex-
ecution and are only of (a) single CPU types, or (b) mas-
sively parallel types written in either MPI such as MPICH 1

or PVM. 2

2. The job resource estimates provided are the upper bound of
the resource usage of a given job.

3. Every job submitted can have its data source located any-
where within the GCE.

4. A job submitted can be scheduled for execution anywhere
within the GCE. Without loss of generality, we also assume
that the applications to be executed are already available in
all sites within the GCE.

5. Job’s resource requirements are divisible into any size prior
to execution.

6. In addition to computational requirements (i.e., GFlops,
RAM and File system requirements), every job also has a
data requirement whereby the main data source and size
is stated. These data resources required are accessible us-
ing GridFTP or GASS 3 services provided by the Globus
Toolkit.

7. The effective run time of a job is computed from the time
the job is submitted, till the end of its result file stage-out
procedure. This includes the time required for the data to be
staged in for execution and the time taken for inter-process
communication of parallel applications.

8. Resources are locked for a job execution once the distribu-
tion of resources start and will be reclaimed after use.

A physical illustration of the resource environment that we
consider is shown in Fig. 1, and the resource view of how the
GMS will access all resources through the LRM is shown in
Fig. 2.

3. Scheduling strategy

From Section 2, we note that the system environment of the
Grid consists of heterogeneous nodes (both desktops as well
as servers). This results in an environment whereby a wide
range of resources are available. These resources may or may
not be well connected to each other depending on network
connectivity and thus require proper allocation and grouping
before jobs can be executed efficiently.

The MRS strategy considers job requirements and resource
capabilities based on some performance metrics and compute
the best matching sites for a job to be dispatched to. It also
encodes common inter-resource dependencies that affects the
efficient execution of jobs, including I/O dependence and com-
munication overheads in its decision making process. This al-
lows jobs to be executed efficiently when allocated to resources
that span across many remote sites. We term this phenomenon

1 MPICH: http://www-unix.mcs.anl.gov/mpi/mpich/.
2 Parallel Virtual Machines: http://www.csm.ornl.gov/pvm/pvm_home.html.
3 Grid Access to Secondary Storage: http://www.globus.org/gass.

as “job fragmentation”. This occurs when a single serial or
parallel job is allocated to a site that is unable to, by itself, sat-
isfy all the resource requirements needed. It thus needs to ob-
tain additional resources from remote sites in order to execute
successfully. MRS is able to allocate both serial and parallel
jobs (optimally) as it always prefers allocating to sites that are
of high bandwidth and low communication overheads. MRS
also treats each submitted job as an independent entity and
does not address workflow requirements of any application. We
feel that this is done without any loss of generality as work-
flow requirements should be addressed at an orchestration layer
independent of the scheduling middleware. With MRS always
allocating every job to sites that best provides its resources, it
ensures that the job execution environment will always be the
best for both serial as well as parallel jobs.

Without loss of generality, jobs request and site represen-
tations of CPU resources is done in terms of GFLOPs as an
indication of performance. Future changes in unit representa-
tions will not affect the strategy as the aggregation algorithm
will result in dimensionless indexes as long as the request and
site resource representation units are the same. This applies to
all other resources shared within MRS.

MRS also tries to allocate resources such as to satisfy a job’s
requirements in a single site in order to improve performance. It
additionally avoids over allocation of resources, so as to prevent
the detrimental effects on other jobs which might need these
resources to achieve efficiency in execution. By mapping a job
to the best capable and matched resources, we hope to be able
to improve the following metrics of performance measure.

1. Average wait-time (AWT): This is defined as the time du-
ration for which a job waits in the queue before being exe-
cuted. The wait time of a single job instance is obtained by
taking the difference between the time the job begins exe-
cution (ej) and the time the job is submitted (sj). This is
computed for all jobs in the simulation environment. The
average job waiting time is then obtained. If there are a total
of J jobs submitted to a GCE, the AWT of a job is given by

AWT =
∑J−1

j=0 (ej − sj)

J
.

This quantity is a measure of responsiveness of the schedul-
ing mechanism. A low wait time suggests that the algorithm
can potentially be used to schedule increasingly interactive
applications due to reduced latency before a job begins ex-
ecution.

2. Queue completion time (QCT): This is defined as the amount
of time it takes for the scheduling algorithm to be able
to process all the jobs in the queue. This is computed by
tracking the time when the first job enters the scheduler until
the time the last job exits the scheduler. In our experiments,
the number of jobs entering the system is fixed, to make
the simulation more trackable. This allows us a quantitative
measure of throughput, where the smaller the time value,
the better. The QCT is given by

QCT = eJ−1 + EJ−1 − s0,

Aut
ho

r's

pe
rs

on
al

co

py

662 B.T.B Khoo et al. / J. Parallel Distrib. Comput. 67 (2007) 659–673

Fig. 1. Illustration of a physical network layout of a GCE.

Fig. 2. Resource view of physical environment with access considerations.

where EJ−1 is the execution time of the last job. This in-
cludes the I/O and communication overheads that occurs
during job execution.
This metric, when coupled with the average waiting time of
a job, allows us to deduce the maximum amount of time a
typical job will spend in the system for a given workload.

3. Average grid utilization (AGU): This quantity investigates
how well the algorithm is capable of organizing the work-
load and the GCE resources so as to optimize the perfor-
mance. Thus, the higher the utilization, the better optimized
the environment is. The utilization of the GCE at each exe-
cution time step is captured and represented as U(t) = Mu

M
,

where M is the total computational resources available. Mu

is the number of computational resources utilized. The AGU
is thus given by the following equation:

AGU =
∑QCT

t=s0
U(t)

QCT
.

3.1. MRS dimension allocation and resource index aggregation

As stated in Section 1.1, MRS is a n-dimensional allocation
strategy. In order to make use of this strategy, the dimensions
to consider must first be decided. The dimensions should be the
general classifications of resource requirements that would be

Aut
ho

r's

pe
rs

on
al

co

py

B.T.B Khoo et al. / J. Parallel Distrib. Comput. 67 (2007) 659 – 673 663

required by a job. We make use of two basic dimensions: (1)
Computation, and (2) Data, in our simulations in order to ver-
ify the effectiveness of our strategy. These two dimensions are
chosen due to the general requirement to achieve faster com-
putation through proper resource allocation such as GFLOPs,
RAM and disk, and better data resource allocation to achieve
higher I/O throughput. Aggregation of the various available re-
sources are then combined into two major indices based on
these two dimensions. We refer to these indices as the Compu-
tational and Data Index, respectively.

From the two indices, we create a 2-dimensional (2D) plot
with the Computation and Data Index. This 2D plot describes
the virtual topology of the job resource requirements, situated
at the origin, to the resource providing sites in the GCE. We call
this virtual topology a Virtual Map. It is thus clear that each site
has two indices that describes its suitability for the job. The most
suited resource providers will be the sites whereby it is located
nearest to the origin. The sections below will demonstrate how
we construct the two selected dimensions and the process of
aggregation that leads to the final aggregated Indexes used in
the Virtual Map.

3.2. Computation dimension

Resources in the computation dimension consist of entities
that would impact the efficient computation of a job. Each re-
source is in turn represented by a capability value and a require-
ment value. In our simulations, we make use of the following
allocable resources as basis for scheduling in the computation
dimension:

• GFLOP (C),
• RAM (M),
• Disk space (F).

However, we note that this is insufficient to represent a collec-
tion of sites and how they can possibly inter-operate with each
other. A job submitted to a poorly connected site will be penal-
ized when job fragmentation occurs or when the data required
for processing is located in another location.

In order to minimize the detrimental effects in such cases,
we introduce a parameter referred to as the Resource Potential.
This is to assist in the evaluation of the Computation Index.
We denote m as the total number of sites in a GCE. The po-
tential, denoted as Pi , of a resource Ri quantifies the level of
network connectivity between itself and its neighboring sites.
For simplicity, we assume that the network latencies as well
as the communication overhead of a resource is inversely pro-
portional to its bandwidth. We refer to the Resource Potential,
Pi of a resource Ri , as a form of “Virtual Distance”, where
1� i�m. This is computed as Pi = ∑

Bij where, B is the up-
load bandwidth, expressed in bits per sec, from Ri to Rj for
i �= j and Bij = 0 if i = j . This effectively eliminates all
network complexities and “flattens” the bandwidth view of all
the resources to the maximum achievable bandwidth between
resources. This also inherently includes all sub-net routing over-
heads and communication overheads when a bandwidth moni-
toring system such as NWS [32] is employed. We illustrate this

“flattening” process in Fig. 3. The values C, M, F and Pi dy-
namically change with resource availability over time t, and is
constantly monitored for changes in our simulation. Thus, in a
GCE where we characterize the resource environment as a set
S = {R1, . . . , Rm}, we can represent the allocatable computa-
tional resources within a site i as a set Sc = {Ri, t} where Sc ⊆
S. Ri is further represented by 4-tuple of fi(〈C, M, F, Pi〉, t)
denoting the four resources considered in our allocation
strategy.

In order to ascertain an aggregated Computation Index of a
site to a job, resources are also requested based on the same
GFLOPs, RAM and Harddisk space required. Similar to a
node’s Resource Potential described earlier, jobs are also addi-
tionally characterized by a potential value. However, this po-
tential value is not obtained from the location where the job is
submitted from, rather, it is obtained from the location of the
source file required for the job to execute efficiently. In our
simulations, we assume that each job only requires data from
one data resource. This data resource can be either local to the
job submission site or remote. As MRS is expected to operate
in a GCE, we also simulate scenarios wherein users can submit
jobs from different locations. 4

We characterize the job environment by J = {Ai, . . . , Aj },
and the computational requirement of each job Aj in the set of
J jobs is represented by gj (〈C, M, F, Psrc〉, t).

3.3. Computational Index through aggregation

Evaluation of various resource requirements of sites and jobs
allows us to aggregate their values and encode inter-resource
relationships in order to arrive at a single computational index
such that it can be used to obtain the allocation score. This is
done by obtaining a ratio of provision (Rij), for site i and job j,
between what is requested and what is possibly provided. For
computational resources, it is given by, Rij {C} = 1 − fi {C}

gj {C} .
Only the positive values of Rij {C} are considered, such that
and Rij {C} = 0 if the above evaluates to be less than zero.
fi{C} and gj {C} are the GFLOP resource provided at site i and
GFLOP resource required by job j. We only consider positive
values in the Virtual Map, and therefore truncate the values at
zero. We make several observations in this equation.

1. Perfect ability to provision for a resource results in this value
being 0.

2. Inability to provide for a resource results in 0 <
fi {C}
gj {C} <

1. The Rij {C} value would approach 1 as the inability to
provision a resource to a job increases.

3. Over-ability to provision resources for a job results in the
Rij {C} = 0.

We apply the same ratio of provision to all resource and re-
quirements within the computational dimension which also
includes RAM (M) and Harddisk (F) requirements. Addi-
tionally we also include the ratio of provision between the

4 Without loss of generality, we have assumed that applications are pre-
staged at the sites.

Aut
ho

r's

pe
rs

on
al

co

py

664 B.T.B Khoo et al. / J. Parallel Distrib. Comput. 67 (2007) 659–673

Fig. 3. Flattened network view of resources for computation of potential.

potential value of the site (Pi) and the source file potential
(Psrc). This allows us to evaluate if a site connectivity is equal
or better to where the source data file is located. This en-
sures that the possible target job submission site will not be
penalized more than required if job fragmentation is to occur,
when compared to executing the job in place at the data source
location.

These ratios are then aggregated into a dimensionless com-
putation index (xi) for site i on job j using the following equa-
tion. Constants KC , KM , KF and KP represents weights that
provide modification to the importance of the respective pro-
visioning ratios in terms of importance to each other. An in-
creasing value of K > 0 signifies an increasing importance of
a specific resource requirement relative to the other resources.
This steers the strategy away from the default allocation to one
that is weighted towards the more important resource.

After the sites providing resources are indexed to obtain xij ,
the site i with the lowest computation index, x∗

ij is deemed to
provide the best resources suited for a job j. In our simulations,
we set the K constants such that K = 1,

xij =
√

(KCRij {C})2 + (KMRij {M})2 + (KF Rij {F })2 + (KP Rij {P })2. (1)

Fig. 4 illustrates how the K constants modifies the result
of Eq. (1). The figure shows two sites A and B, which both
evaluates to the same xij value if K = 1 for an arbitrary job.
Site A provides a perfect fit for a job in RAM while Site B
provides a perfect fit for the job in disk space. Under normal
circumstances, both sites would be equally considered in job
allocation. However, Fig. 4 shows that as KM is decreased to 0,

representing the lowered importance of RAM to the other re-
quired resources, Site B begins to become a more favorable
allocation site in view of its computational index. Site B thus
gets a better chance of being selected for allocation even though
Site A perfectly fits the job requirements for RAM. This is due
to the fact that the allocation mechanism has been steered from
considering the effects of RAM, and is now giving more con-
sideration to the other resources such as disk space instead.
As KM increases beyond 1, it can be observed that RAM has
now gained greater importance w.r.t. the other resource require-
ments, resulting in a increasing deviation between the xij val-
ues of Sites A and B. In this circumstance, the strategy would
thus select Site A as it fits the RAM requirements perfectly and
not select Site B based on the minimum value of xij .

3.4. Data dimension and indexing through resource
inter-relation

In the data dimension, we wish to inter-relate resources that
would affect the I/O of a job and evaluate an index that aids us in

determining a good resource site that would best execute a job.
The expected time for I/O is determined based on the estimated
data communications required and the bandwidth between the
source file location and the target job allocation site. The ratio
between the I/O communication time to the estimated local job
runtime is then taken. This ratio allows us to evaluate the level
of advantage a job has in dispatching that job to a remote site.

Aut
ho

r's

pe
rs

on
al

co

py

B.T.B Khoo et al. / J. Parallel Distrib. Comput. 67 (2007) 659 – 673 665

Fig. 4. Variation of xij versus changes in the weighing constant KM .

This is because a site capable of executing a job locally would
incur a minimal (not-zero) I/O time as compared to any other
remote location. Thus, allocation of a job to the intended target
resource should be one whereby this ratio is as low as possible.

The I/O time is mainly dependent on the availability of band-
width at a site. The available bandwidth also changes over time
depending on if a resource is sharing any of its network re-
sources with other resources in the GCE. This is also captured
as a sequence of complete network allocation for a job in our
simulator. We annotate bandwidth B between two sites i and j
as Bij = min{Bdownload

ij , B
upload
ji } which changes over time t as

data capabilities of a resource Sd{Ri, t}. Where each item in
the set is represented by di{〈B〉, t}. The data requirement of a
job j is thus represented by ej {〈F, Aruntime〉, t} where Aruntime

is the estimated runtime of the job.
We make use of this ratio to create the Data Index. This

evaluation is an example of aggregation based on resource inter-
relation. I/O time is affected by the amount of data for a job
and the actual bandwidth resource available. In the worst-case
scenario, the amount of data required for the job would also
be the amount of harddisk resource required at the site to store
the data to be processed. This, therefore inter-relates the data
resources to the bandwidth resources available. The ratio is
written as follows:

yij = ej {F }
di

{
Bij

} .
1

Aruntime . (2)

It is noted that yij continues to be dimensionless and a smaller
value would represent a better site i preference when compared
to a larger one. An (ascending) ordered yij would rank sites with
the better advantage in handling job fragmentation compared
to those ranked later.

3.5. Dimension merging

From the individual Computation and Data Indices described
above, we observe that the best allocated resources are repre-
sented by those with low index values. Each of the individual
indices are also encoded with resource requirements consider-
ations in its evaluation through aggregation. These points when
plotted on a 2D axis creates what we termed as the Virtual Map
that is described in Section 3.1. As we have observed, sites that
position themselves closest to the origin are those that deviate
from the resource requirements by the least amount. An illus-
tration of the Virtual Map is shown in Fig. 5. The Euclidean
distance from the origin therefore denotes the best possible re-
sources that matches the resource requirements of a job for an
instance in time.

In Fig. 5, the computation and data index is computed by
Eqs. (1) and (2) for each job in the queue. As job requirements
differs for each job, the Virtual Map is essentially different for
each job submitted. This has to be computed each time a job
is to be submitted or re-submitted to the GCE.

4. System design and implementation

From the allocation strategy, we proceed to implement the
scheduling mechanism in a GCE. There are several points ob-
served in the implementation of the system made to support the
MRS scheduling strategy.

• Each dimensional index is independent between sites and
can therefore be computed locally at the participating sites
within the GCE.

• A job can be submitted from any node within the GCE. A
resource requirement broadcast mechanism with timeout was
implemented for each job. This allows the job to announce

Aut
ho

r's

pe
rs

on
al

co

py

666 B.T.B Khoo et al. / J. Parallel Distrib. Comput. 67 (2007) 659–673

Fig. 5. A Virtual Map is created for each job to determine allocation.

itself to the sites within the GCE. It also allows sites within
the GCE to obtain the specific requirements for each job
and evaluate its computation and data indexes accordingly.
The timeout for requirements broadcast effectively truncates
sites that do not reply within a certain delay. This is a simple
mechanism to efficiently truncate sites that are responding
too slowly to requests due to high load or congested band-
width.

• A caching mechanism was implemented in the participating
sites in order to help reduce the communications overheads.

As resources are not always available to handle jobs at the
time of job submission, these job requirements would have
to be resent in a broadcast whenever a change in resource
availability is detected.

A job allocation communication in the event of a new job sub-
mission is as follows.

1. New job announces itself to entire GCE using a unique job
ID together with its requirements.

Aut
ho

r's

pe
rs

on
al

co

py

B.T.B Khoo et al. / J. Parallel Distrib. Comput. 67 (2007) 659 – 673 667

2. Sites receive broadcast and acknowledge (ACK) with Eu-
clidean distance of its Virtual Map location to origin. Sites
also cache the requirements locally.

3. Job submission location waits for a timeout and collects all
ACK responses and sorts the results in ascending order.

4. Full job description is dispatched to the target site.
5. Target site acknowledges receipt of full job and begins

processing execution request. Job submission location then
issues a “cache clear” to all sites for this job ID.

In event of a job re-submission, the following process takes
place first for a job with the longest wait time.

1. Job re-announces submission request to the GCE.
2. Sites with requirements in cache ACK with Euclidean

measure. Sites without requirements in cache ACKs with
requirements request.

3. Job submission location sends requirements to the other sites
and waits for timeout.

4. Sites receive requirements and acknowledge (ACK) with
Euclidean distance of its Virtual Map location to origin.
Sites also cache the requirements locally.

5. Job submission location waits for a timeout and compiles
all ACK responses and sorts the results in ascending order.

6. Full job description is dispatched to the target site.
7. Target site acknowledges receipt of full job and begins

processing execution request. Job submission location then
issues a “cache clear” to all sites for this job ID.

From the above process, several advantages in the implemen-
tation of the MRS strategy is observed.

• The indexes, being independent between sites, are evalu-
ated within sites. It does not require any system monitor-
ing mechanism to inform a master scheduler about its state.
Thus reducing the complexity of the entire system during
implementation.

• The main scheduler in the MRS does not contain complex
algorithms and is only required to sort the resulting Eu-
clidean measure that is obtained from the GCE. Only job
tracking functionalities are required at the various locations
where job submission is permitted. This allows the strategy
to scale better when more resources are added into the GCE
to be considered. It also allows more inter-resource relations
to be defined as separate dimensions without computational
penalties as in a central scheduling strategy.

• Multiple MRS schedulers can co-operate in a large-scale
GCE. This is because the ability of resource provision is
computed at the sites itself. Therefore, each site provides
its willingness to accept a job. As multiple jobs arrive in
a site, the Euclidean measure is computed sequentially and
resources pre-emptively deducted. These resources will be
re-included in the site as a “cache clear” is received for the
intended job ID. This ensures that resources are correctly
reported at every ACK to the job submission locations. This
also provides a starting point for implementing a scalable
distributed scheduling mechanism to support a large-scale
GCE.

• Independent resource policies can be implemented at every
site as the Euclidean measure is calculated within the site.
This allows the site administrators to be able to easily define
the amount of shared resources available to the GCE with-
out consulting a GCE administrator. Essentially, this reduces
the involvement of the administrator in defining “rules” in
resource allocation. Again, this reduces the implementation
complexity of the MRS system.

• The broadcast and ACK mechanism used in MRS provides
a way to identify sites that are disconnected from the site.
The timeout function also allows the strategy to discard sites
whose resources are possibly more scarce. This helps MRS
in identifying sites that it can continue to schedule to even
as sites leave and join the Grid environment.

The system and strategy for MRS can be described as a class of
Job Sharing strategies operating within a Multi-Site Comput-
ing Model [4]. However, when MRS is compared to the models
described in [4], clear stages in resource selection and schedul-
ing algorithm does not exist. The computation of the indices
combines the selection and scheduling stages and thus reduces
the fragmentation of resource considerations during resource
allocation and scheduling.

In a strategy wherein resource matching is followed by allo-
cation through a scheduling algorithm, where there are n com-
puting sites in the GCE and m resources to consider, the time
complexity of the resource selection stage would be O(nm).
This results in undesirable slow-downs when there are either
a huge number of sites, or when there is a large number of
resources to consider. The total time is therefore the sum of
time-to-allocate and the time-to-schedule.

In MRS, the broadcast of requirements is of time complexity
O(n) as each site will only need to receive the resource require-
ments of a job once. However, due to broadcast, network laten-
cies will be involved, which can possibly lead to slow-downs in
MRS. This can be easily prevented by “dropping” sites that do
not acknowledge the broadcast in a fixed amount of time. We,
thus set an upper limit of the time-to-live (TTL) for each broad-
cast depending on the network environment MRS is operating
in. The worst-case overall time taken for MRS to schedule can
thus be written as 2n.TTL+max(CTn), where max(CTn) is the
maximum time taken for index computation for a single site.
The time complexity therefore remains linear with increase in
sites as well as resources when using MRS.

We also investigated the computational complexity of MRS
compared to other Job Sharing strategies in a Multi-Site Com-
puting Model. When a strategy separates the resource selection
and the scheduling phases, two main components contribute
to the computational complexity of the strategy for each job.
First, the sorting and filtering methodology used in the resource
selection phase, and secondly, the scheduling complexity in-
curred in the algorithm used. In MRS, the creation of the Vir-
tual Map for each job is essentially a sort of the (x, y) indexes
provided by the sites participating in the MRS. This is simpli-
fied further when we use the Euclidean distance as a measure
of match. The computational complexity is therefore only de-
pendent on the sorting algorithm. This is because scheduling

Aut
ho

r's

pe
rs

on
al

co

py

668 B.T.B Khoo et al. / J. Parallel Distrib. Comput. 67 (2007) 659–673

in MRS is a one step process. It is also noted that the compu-
tation complexity of the indices provided by the participating
sites is linear to the number of resources and the number of di-
mensions we wish to consider in the Virtual Map. The increase
in the number of sites or resources therefore has no effect on
the overall allocation strategy provided in MRS, and thus lim-
its the computation complexity to that of the sorting algorithm
used in the system. This is unlike other strategies which can
still incur computation complexities in the other stages of al-
location. In our implementation, the sorting strategy used is a
stable merge–sort where the complexity is O(n log n).

It should be noted that in MRS, resource considerations are
not limited to dependencies. Additional requirements or depen-
dencies can be easily added by extending the number of di-
mensions to be considered within MRS. This does not severely
impact the complexity of MRS in both time and computation
complexity when compared to other methods.

The broadcast of resource requirements in the GCE is done
“all to all” due to the nature of Job Sharing. This is potentially
wasteful when jobs have to be rescheduled due to the lack of
resources or are delayed for some reason. We reduce the im-
pact of broadcasting by allowing sites in the GCE to cache all
requirements of unscheduled jobs upon reception of a broad-
cast. Subsequent notifications to try to schedule the same jobs
will therefore incur much less overheads in communication. A
cancellation broadcast was also introduced to notify all partici-
pating sites in the GCE to remove an unscheduled job from its
cache. This keeps the entire GCE in sync of the jobs that are
remaining to be scheduled.

4.1. Simulations, results and discussions

Based on the system design in Section 4, the GCE is simu-
lated in order to ascertain the performance of MRS.

We compare our MRS with the Backfilling strategy (BACK-
FILL) [6,16] and a job Replication (REP) strategy [14], which
is similar to that used in SETI@Home [12]. We make use of
similar Job Sharing and Multi-site environment as described
earlier such that the intrinsic advantages of the algorithms can
be elicited and quantified.

The workload model provided by Song et al. [25] was used
as the workload input. The workload profile is shown in Fig. 6.
The metrics described in Section 3 were used to quantify the
performance and comparison. The results of our experiments
are summarized in Table 1 and Fig. 7. The significance of these
results are discussed below.

In the simulation model, jobs are allowed to arrive in a stream
over a span of three days. The various job requirements are
modeled by the information provided in [15,25] and are in-
jected into the simulation model. Data requirements are also
additionally generated in order to simulate the need for data
to be transported from one location to another in order for a
successful computation to take place.

AWT is the average amount of time a job waits in the queue
before being executed. This starts from the point of submission
to the point when the job begins its transmission to the execu-
tion node. In Fig. 7, we have normalized all the performance

indicators to the BACKFILL algorithm in order to look at the
performance differences of the experiments.

It was noted that in terms of AWT, both REP and MRS sig-
nificantly outperforms BACKFILL by 40% and 50%, respec-
tively, when run in a distributed environment. This is due to the
fact that the backfill algorithm does not allocate jobs in con-
sideration of the data distribution time. The fact that jobs are
streaming into the system also accounts for the inability for
the algorithm to be able to obtain a good “packing” schedule
where resources will be optimized. We observe that the AWT of
REP is far better than BACKFILL. This is attributed to the fact
that as a job gets replicated, the likelihood of being allocated
to a faster resource or bandwidth increases. This is, however,
non-optimal as it was achieved without making full use of the
information available in the execution environment. This non-
optimality is verified by the fact that MRS is able to achieve an
even better AWT by making use of inter-resource relationships
defined within its indices.

From Table 1, we can also clearly see that the utilization for
BACKFILL is the lowest in all the experiments. REP and MRS
exhibits increasing levels of utilization which accounts for a
shorter AWT. However, it may be noted that in the replication
algorithm, every job is essentially submitted twice in order to
achieve better performance. This replication potentially hinders
the execution of other jobs that might require more CPUs in
the GCE. This can also artificially inflate the utilization of the
GCE. This is clear from the fact that an increase in utilization
using the REP strategy does not lead to any improvement in the
QCT. It has, instead, induced a detriment to the GCE by almost
70% when compared to BACKFILL. In contrast, we can see an
improvement of 18% when comparing the utilization between
MRS and REP. This is also directly reflected in the overall QCT
which has improved by 52%.

From our experiments, we observe that replication can lead
to a degradation of performance when the entire queue is con-
sidered. This is clearly reflected in Fig. 7, where REP is per-
forming 71% slower in QCT when compared to BACKFILL.
It is to be noted that the time taken for a job to complete its
execution is inclusive of the execution overheads and latencies
that is associated with data and computation communications.

In contrast to BACKFILL and REP, our simulations have
shown that MRS has been able to achieve a 50% improvement
AWT, an 18% improvement over QCT and a 29% improvement
in AGU. This is due to the fact that MRS makes use of com-
parative measures on the benefits of allocation to each node.
This is inherent to the algorithm during the process of Virtual
Map creation. A lower AWT is very much due to a good allo-
cation decision of the resources when MRS is presented with
a queue of jobs. This allows for more jobs to be allocated per
unit time, which is reflected clearly in the 18% improvement
in QCT over BACKFILL. This is achieved without the over
allocation of resources as in REP, giving MRS a 52.3% im-
provement in QCT when compared to a REP. The matching of
resources using the computation and data indexes, also results
in a much higher utilization, dispatching jobs to nodes that are
able to satisfy the jobs while intelligently deciding which jobs
to keep local and which jobs to dispatch.

Aut
ho

r's

pe
rs

on
al

co

py

B.T.B Khoo et al. / J. Parallel Distrib. Comput. 67 (2007) 659 – 673 669

Fig. 6. Workload model profile provided by Song et al. [25].

Table 1
Experimental results comparing BACKFILL, REP and MRS

AWT (time units) QCT (time units) AGU (%)

Tabulated experimental result
BACKFILL 2579.43 187302.22 57.78
REP 1500.40 320362.16 63.08
MRS 1266.71 152810.98 74.46

AWT (%) QCT (%) AGU (%)

Percentage improvement over BACKFILL
REP 41.83 (71.04) 9.16
MRS 50.89 18.41 28.86

Percentage improvement over REP
BACKFILL (71.91) 41.53 (8.40)
MRS 15.58 52.30 18.04

In view of the workload model used, we observe that many
of the jobs in the simulation model requires between 1 and 64
GFLOPs. A majority of the jobs also require run times less
than half the longest running job. On comparing this workload
model that we are using with those from San Diego Super-
Computing Center (SDSC), Lawrence Livermore National
Laboratory (LLNL) and Kungliga Tekniska hogkölan - Royal
Institute of Technology (KTH), we find that our workload
profile exhibited close similarities when compared to [15,10].
This provides further assurance that MRS is able to provide
advantages in scheduling when applied to other common
workload.

In general, it is observed that MRS is able to render a per-
formance that is much suited for scheduling resources over
a GCE.

Aut
ho

r's

pe
rs

on
al

co

py

670 B.T.B Khoo et al. / J. Parallel Distrib. Comput. 67 (2007) 659–673

Fig. 7. Normalized comparison of simulation to backfill algorithm.

5. Related work

There have been other strategies introduced to handle re-
source optimization for jobs submitted over Grids. However,
while some investigated strategies to obtain optimizations in the
computational time domain, others looked at optimizations in
data or I/O domain. Recently, more creative methods to achieve
optimal scheduling have included the concept of the costs of re-
sources in financial terms. Some of these techniques, which are
relevant to the context of this paper, will be introduced below.

In [26], job optimization is handled by redundantly allocat-
ing jobs to multiple sites instead of sending it only to the least
loaded site. The rationale in this scheme was that the fastest
queue will allow a job to execute before its replicas and this
provides low wait times and improves turn-around time. Job
allocation failures due to site availabilities would also be better
handled due to this redundancy. However, this strategy leads
to problems where queue lengths of different sites are unnec-
essarily loaded handle the same job. The frequent changes in
queue length can also potentially hamper on-site scheduling al-
gorithms to work effectively as schedules are typically built by
looking ahead in the queue. In addition, the method proposed
does not investigate the problems that can arise when the data
required for the job is not available at the execution site and
needs to be transported for a successful execution. MRS works
to eliminate these issues by allocating only the right amount of
resources to jobs that requires it, thus freeing up queues from
potentially non-executing jobs.

In [33], Zhang has highlighted that the execution profiles of
many applications are only known in real-time, which makes
it difficult for an “acceptance test” to be carried out. The study
also broke down the various scheduling models into (1) cen-
tralized, wherein all jobs are submitted at a central location for
scheduling and dispatching, (2) decentralized, wherein jobs are
submitted at their local locations for dispatching, and (3) hier-
archical model, wherein jobs are submitted to a meta-scheduler
but are dispatched to low-level schedulers for dispatching
and execution. Effective virtualization of resources was also
proposed in order to abstract the resource environment and

hide the physical boundaries defined. A buddy set as in [23]
was also proposed, and its effectiveness also highlighted in
[1], where it was shown that when groups of trusted nodes
co-operate, the resulting performance is superior compared
to situations where there is no relationship establishment be-
tween nodes. However, in both cases, the strategies proposed
looks plainly at the computational requirements of a job and
does not consider the data resource required. It also does not
address resource allocation pertaining to both serial and par-
allel job requirements. MRS effectively applies the concept
of co-operation and virtualization to exploit the advantages
presented in [1,23], but includes knowledge of bandwidth to
account for I/O and communication overheads. While this al-
lows us to apply MRS to both serial and parallel jobs, it also
allows us to efficiently schedule in a Grid environment where
the data resources are distributed.

In the work presented in [13], the ability to schedule a job
in accordance to multiple (K) resources is explored. Although
the approach was not designed with the Grid environment in
mind, the simulation work presented in [13] shows clearly the
potential benefits where scheduling with multiple resources is
concerned. Performance gains of up to 50% were achieved
when including effective resources awareness in the scheduling
algorithm. Similar resource awareness and multi-objective
based optimizations were studied in [31]. In both cases, the
limitations of inconventional methods was also identified as
there was have no mechanism for utilizing additional informa-
tion known about the system and its environment. However, in
[13], there was no data resources identified, while in [31], we
believe that the over simplicity of resource aggregation was
inadequate in capturing resource relationships. MRS proposes
a more complex form of resource aggregation that allows for
better expression of resource relationships, while maintaining
simplicity in the algorithm construction. At the same time we
continue to consider multiple resources which includes both
computational and data requirements.

In [22] data replication and reuse of resources was looked
into as a means of establishing a Grid being able to handle
large data (i.e., Data Grid). Elizeu et al. has looked into the
classification of tasks that are processors of huge data (pHD),
where by processes require large data sets and data reuse is
possible. They introduced a term referred to as Storage Affinity,
which takes into account on how reusable is a set of data by
pHDs or a bag of tasks. This also determines if a task should be
sent to a location where the required data resides or vice versa.
Following this, task replication [14] is used to reduce the wait
time of the job. This method is useful to handle pre-replicated
or re-usable data but does not address how the data would be
best scheduled for applications with no reusable data. However,
[22] has demonstrated that it is possible to improve response
times for jobs through smart data management. We build on
this concept of affinity in our algorithm, combined with better
resource relationship representation, to arrive at a strategy that
would allow the overall overheads of data transmission to be
minimized. This is done with no detrimental effect on the wait
times of a job and the overall queue completion of the Grid
environment.

Aut
ho

r's

pe
rs

on
al

co

py

B.T.B Khoo et al. / J. Parallel Distrib. Comput. 67 (2007) 659 – 673 671

Contributions in [30] considered the idea of replication and
further included a data catalog method to discover and the best
location to use. Making use of the Network Weather Service
[32], it is possible to determine the best node to collect the data
from/send a job to. Then, a compute–data pair is assigned with
the earliest completion time. This, method has again identified
that data optimization is critical to the response time of a job.
This, however, does not exploit resource locality w.r.t. the serial
or parallel job requirements. This is thus unsuitable for jobs that
are highly parallel in nature (i.e., for applications customized
for distributed memory systems). We look upon parallel jobs as
applications that requirements low latency and high bandwidth,
and assign the resource allocation such that both parallel and
serial jobs are optimized.

In [21], Ranganathan et al. presented that Computa-
tion Scheduling and Data Scheduling can be considered
asynchronously in Data-Intensive Applications. The study
considered External Schedulers, local Schedulers and Data
schedulers. It concludes that data movement and computation
need not always be coupled for consideration together. While
this might be true, and demonstrated in [30], through High
Energy Physics applications, this is not always the case when
MPICH-G2 type applications [11,19] are concerned. MRS
recognizes parallel job requirements and, by using affinity and
combined resource allocation, decides the best sites for the job
to be dispatched to such that everything is in the same path.

Other projects such as the Storage Resource Broker [20] and
OGSA-DAI [17] mainly concentrates on assisting the access
and integration of data in a distributed computing environment
such as a Grid. By itself, these middleware does not decide nor
allocate the availability of data resources.

While many other works such as [3,29] continues to provide
algorithms to effectively allocate resources, much of these
works on the premise of [21] where data and computation
resource requirements are handled separately. While these
mechanisms are shown to be effective in Monte-Carlo or pa-
rameter sweep type applications where the tasks or sub tasks
are considered to be independent, we hesitate to generalize on
its effectiveness when the nature of jobs, such as MPI-G2 paral-
lel class of applications, can lead to inter-resource dependence.
Although many of these algorithms work effectively over a
known set of resources, the complexity of the strategies makes
it difficult to include additional resources to the Grid. MRS
seeks to eliminate this limitation to allow additional resource
considerations to be easily added for consideration through
aggregation and representation of resource dependence. Our
simulation demonstrates this aggregation to cater for data and
communication overheads while at the same time, taking care
of both requirements of serial and MPI parallel application,
especially during fragmentation.

6. Conclusions

In this paper, we have proposed a novel distributed resource
scheduling algorithm capable of handling several resources
to be catered among jobs that arrive at a Grid system. Our
proposed algorithm, referred to as MRS algorithm, takes into

account the different resource requirements of different tasks
and shown to obtain a minimal execution schedule through
efficient management of available Grid resources. We have pro-
posed a model in which the job and resource relations are cap-
tured and are used to create an aggregated index. This allows
us to introduce the concept of Virtual Map that can be used by
the scheduler to efficiently determine a best fit of resources for
jobs prior to execution. We also introduced the concept of Re-
source Potential to identify inter-relations between resources
such as bandwidth and data. This allows us to identify sites that
has least execution overheads with respect to a job.

In order to quantify the performance, we have used perfor-
mance measures such as average job wait times, queue comple-
tion times, and average resource utilization factor, respectively.
We considered practical workload models that are used in real-
life systems to quantify the performance of MRS. Performance
of MRS has been compared with conventional backfill and
replication algorithms that are commonly used in a GCE. Work-
load models based on recent literature [25] was also used. Our
experiments have also conclusively elicited several key perfor-
mance features of MRS with respect to the backfill and repli-
cation algorithms, yielding performances improvements up to
50% on some performance measures.

Below we briefly discuss on some possible immediate ex-
tensions to the problem we have addressed in this paper. Al-
though the techniques used in MRS appear to be promising,
we believe that it can be extended to include more dimensions
then just computational and data. For instance, using the Vir-
tual Map technique, it is possible that other parameters such as,
Quality-of-Service [7,28], economic considerations [2] can be
included into the model by simply extending the number of di-
mensions of consideration. These new considerations and how
it interacts with other parameters have to be studied carefully
to quantify the inter- and intra-resource relationship and then
represented into an aggregation equation which can be used in
MRS. It would be interesting to consider expanding our simula-
tion environment to include latency information and not assume
the direct relation between bandwidth and latency. Lastly, it
would be more interesting to invent advanced techniques of job
arrangement and fragmentation of jobs to thoroughly exploit
the idling resources during the execution of jobs, especially
when job queues are insufficient to fully utilize a Grid comput-
ing environment.

Acknowledgments

Parts of this work addressed certain objectives of a funded
project in Grid Computing under the Grant 052 015 0024/R-
263-000-350-592 from National Grid Office via A*Star, Sin-
gapore. Bharadwaj Veeravalli would like to thank the funding
agency in supporting this research.

References

[1] F. Azzedin, M. Mahewaran, Integrating trust into grid resource
management systems, in: Proceedings of ICPP 2002, 2002.

Aut
ho

r's

pe
rs

on
al

co

py

672 B.T.B Khoo et al. / J. Parallel Distrib. Comput. 67 (2007) 659–673

[2] R. Buyya, M. Murshed, D. Abramson, S. Venugopal, Scheduling
parameter sweep applications on global grids: a deadline and budget
constrained cost–time optimisation algorithm, Int. J. Software: Pract.
Exper., This document can also be found at: 〈http://www.gridbus.org/
∼raj/cv.html#papersjl〉.

[3] H. Casanova, A. Legrand, D. Zagorodnov, Heuristics for scheduling
parameter sweep applications in grid environments, in: Ninth
Heterogeneous Computing Workshop 2000, 2000.

[4] C. Ernemann, V. Hamscher, U. Schwiegelshohn, R. Yahyapour, On
advantages of grid computing for parallel job scheduling, in: Proceedings
of the Second IEEE/ACM International Symposium on Cluster
Computing and the Grid, 2002.

[5] I. Foster, C. Kesselman, The Grid: Blueprint for a New Computing
Infrastructure, second ed., Morgan-Kaufman, Los Altos, CA, 2004.

[6] V. Hamscher, U. Schwiegelshohn, A. Streit, Evaluation of job-scheduling
strategies for grid computing, in: Proceedings of the First IEEE/ACM
International Workshop on Grid Computing, Brisbane, Australia,
2000.

[7] X.S. He, X.H. Sun, G. von Laszewski, QoS guided min–min heuristic for
grid task scheduling, J. Comput. Sci. Technol. 18 (4) (2003) 442–451.

[8] Hewlett Packard, High Performance Technical Computing, 〈http://
www.hp.com/techservers〉, 2004.

[9] IBM, Cluster Servers, 〈http://www-1.ibm.com/servers/eserver/clusters/〉,
2004.

[10] J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, J. Riodan, Modeling
of workload in MPPs, in: D.G. Feitelson, L. Rudolph (Eds.), Job
Scheduling Strategies for Parallel Processing, Lecture Notes in Computer
Science, vol. 1291, Springer, Berlin, 1997, pp. 95–116.

[11] N. Karonis, B. Toonen, I. Foster, MPICH-G2: a grid-enabled
implementation of the message passing interface, J. Parallel Distrib.
Comput. (JPDC) 63 (5) (2003) 551–563.

[12] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, M. Lebofsky,
SETI@home—massively distributed computing for SETI, Comput. Sci.
Eng. 3 (1) (2001) 81.

[13] W. Leinberger, G. Karypis, V. Kumar, Job scheduling in the presence
of multiple resource requirements, in: Proceedings of the IEEE/ACM
SC99 Conference, Portland, Oregon, USA, November 13–18, 1999,
pp. 47–48.

[14] Y. Li, M. Mascagni, Improving performance via computational replication
on a large-scale computational grid, in: IEEE/ACM CCGRID2003,
Tokyo, 2003.

[15] U. Lublin, D.G. Feitelson, The workload on parallel supercomputers:
modeling the characteristics of rigid jobs, Technical Report 2001-12,
School of Computer Science and Engineering, The Hebrew University
of Jerusalem, October 2001.

[16] A.W. Mu’alem, D.G. Feitelson, Utilization, predictability, workloads,
and user runtime estimates in scheduling the IBM SP2 with backfilling,
IEEE Trans. Parallel Distrib. Syst. 12 (6) (2001) 529–543.

[17] Open Grid Service Architecture Data Access and Integration,
〈http://www.ogsadai.org.uk/〉.

[18] Parallel Workload Archive: Models, 〈http://www.cs.huji.ac.il/labs
/parallel/workload/models.html〉.

[19] K.-L. Park, H.-J. Lee, O.-Y. Kwon, S.-Y. Park, H.-W. Park, S.-D. Kim,
Design and implementation of a dynamic communication MPI library
for the grid, Int. J. Comput. Appl. 26 (3) (2004) 165–171.

[20] A. Rajasekar, M. Wan, R. Moore, W. Schroeder, G. Kremenek, A.
Jagatheesan, C. Cowart, B. Zhu, S.-Y. Chen, R. Olschanowsky, Storage
resource broker—managing distributed data in a grid, Comput. Soc.
India J. 33 (4) (2003) 42–54 (special issue on SAN).

[21] K. Ranganathan, I. Foster, Decoupling computation and data scheduling
in distributed data-intensive applications, in: Proceedings of the 11th
IEEE International Symposium on High Performance Distributed
Computing HPDC-11 (HPDC’02), Edinburgh, Scotland, July 24–26,
2002, pp. 352–358.

[22] E. Santos-Neto, W. Cirne, F. Brasileiro, A. Lima, Exploiting replication
and data reuse to efficiently schedule data-intensive applications on grids,
in: Proceedings of the 10th Workshop on Job Scheduling Strategies for
Parallel Processing, June 2004.

[23] K.G. Shin, Y. Chang, Load sharing in distributed real-time systems with
state change broadcasts, IEEE Trans. Comput. 38 (8) (1989) 1124–1142.

[24] N. Snyder, IBM Linux Clusters, 〈http://linux.ittoolbox.com/documents/
document.asp?i = 2042〉, 2002.

[25] B. Song, C. Ernemann, R. Yahyapour, User group-based workload
analysis and modelling, Cluster and Computing Grid Workshop 2005,
Cardiff, UK, 2005.

[26] V. Subramani, R. Kettimuthu, S. Srinivasan, P. Sadayappan, Distributed
job scheduling on computational grids using multiple simultaneous
requests, in: Proceedings of 11th IEEE International Symposium on
High Performance Distributed Computing HPDC-11 20002 (HPDC?02),
Edinburgh, Scotland, July 24–26, 2002, pp. 359–368.

[27] Sun Microsystems, High Performance Technical Computing, 〈http://
www.sun.com/solutions/hpc〉, 2004.

[28] A. Takefusa, H. Casanova, S. Matsuoka, F. Berman, A study of
deadline scheduling for client-server systems on the computational
grid, in: Proceedings of the 10th IEEE International Symposium
on High Performance Distributed Computing (HPDC-10), 2001,
pp. 406–415.

[29] K. Taura, A. Chien, A heuristic algorithm for mapping communicating
tasks on heterogeneous resources, in: Ninth Heterogeneous Computing
Workshop 2000, 2000.

[30] S. Venugopal, R. Buyya, L. Winton, A grid service broker for
scheduling distributed data-oriented applications on global grids,
Technical Report, CoRR cs.DC/0405023, 2004, This can be located at:
〈http://www.gridbus.com〉.

[31] K.N. Vijay, L. Chuang, L. Yang, J. Wagner, On-line resource matching
for heterogeneous grid environments, in: Cluster and Computing Grid
Workshop, Cardiff, UK, 2005.

[32] R. Wolski, G. Obertelli, Network Weather Service, 〈http://nws.cs.
ucsb.edu〉, 2003.

[33] L. Zhang, Scheduling algorithm for real-time applications in grid
environment, in: Proceedings on IEEE International Conference on
Systems, Man and Cybernetics, vol. 5, USA, 2002.

Khoo Boon Tat, Benjamin, has been involved
with High Performance Computing since 2000,
and received his B.Eng. from the National Uni-
versity of Singapore in 2001. Prior to this, he
has worked in the area of High Performance
Computing with IBM and has implemented mul-
tiple research centric as well as commercial
Grid infrastructures in the Asia Pacific region.
He was also part of the Institute of High Per-
formance Computing in Singapore (2003), as
part of a research team involved in Grid ar-
chitectures and middleware. Since then, he has

implemented many more clusters and Grids including visualization clusters
and distributed computing infrastructures on many platforms. He is now in
Apple Inc., as a senior consultant in enterprise solutions and scientific markets
for South Asia. He is also currently pursuing his M.Eng. from the National
University of Singapore. His research interest includes distributed scheduling
for cluster/Grids, distributed data management and large-scale visualization
systems.

Bharadwaj Veeravalli (http://cnds.ece.nus.edu.
sg/elebv), received his Ph.D. from the De-
partment of Aerospace Engineering, Indian
Institute of Science (IISc), Bangalore, India,
in 1994, Masters in Electrical Communication
Engineering from IISc, Bangalore, India in
1991 and B.Sc. in Physics, from the Madurai-
Kamaraj University, India, in 1987. He did his
post-doctoral research in the Department of
Computer Science, Concordia University, Mon-
treal, Canada, in 1996. He is currently with the

Department of Electrical and Computer Engineering, at The National Uni-
versity of Singapore, as an Associate Professor. His research interests in-
clude, Cluster/Grid computing, Scheduling in Parallel and Distributed systems,
Bioinformatics, and Multimedia computing. He has published extensively in

Aut
ho

r's

pe
rs

on
al

co

py

B.T.B Khoo et al. / J. Parallel Distrib. Comput. 67 (2007) 659 – 673 673

international journals and conferences, and has co-authored three research
monographs in the areas of Parallel and Distributed Systems, Distributed
Databases, and Networked Multimedia Systems. He is serving the editorial
board of IEEE TC, IEEE TSMC-A, IJCA, USA, as an Associate Editor.

Dr. Terence Hung is a Programme Manager at
the Institute of High Performance Computing
(Singapore) with an adjunct associate profes-
sorship at the Nanyang Technological Univer-
sity. He leads research in grid computing, HPC,
data mining and visualization. Terence sits on
various committees to drive national level grid
activities. He has served as external proposal
reviewer for NSERC (Canada) and consultant
to Gerson Lehrman Group on HPC. Terence’s
research interests include efficient multi-core al-
gorithms, adaptive parallelism and software as

a service. He is PI/co-PI in various local and international grant projects.
Terence has a Ph.D. in Electrical Engineering from the University of Illinois
at Urbana-Champaign.

Dr. Simon See is currently the High Perfor-
mance and Grid Computing Technology Direc-
tor for Sun Microsystems Inc. and also the
Director/Chief Technologist for Sun Asia Pa-
cific Science and Technology Center. He is
also an Adjunct Associate Professor in both
the Nanyang Technological University and the
National University of Singapore. His research
interest is in the area of High Performance Com-
puting, Computational Science, Applied Math-
ematics and Simulation Methodology. He has
published over 50 papers in these areas and has

won various awards. Dr. See graduated from the University of Salford (UK)
with a Ph.D. in Electrical Engineering and Numerical Analysis in 1993. Prior
to joining Sun, Dr. See worked for SGI, DSO National Lab. of Singapore,
IBM and International Simulation Ltd (UK). He is also providing consultancy
to a number of national research and supercomputing centers.

