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Abstract

In this paper, we consider designing pro-active failure handling strategies for grid environments. These

strategies estimate the availability of resources in the Grid, and also preemptively calculate the expected long

term capacity of the Grid. Using these strategies, we create modi�ed versions of the back�ll and replication

algorithms to include all three pro-active strategies to ascertain each of its e�ectiveness in the prevention of

job failures during execution. Also, we extend our earlier work on a co-ordinate based allocation strategy. The

extended algorithm also shows continual improvement when operating under the same execution environment.

In our experiments, we compare these enhanced algorithms to their original forms, and show that pro-active

failure handling is able to, in some cases, avoid all job failures during execution. Also, we show that NSA

provides the best balance of enhanced throughput and job failures during execution in the algorithms we have

considered.

1 Introduction

Grid computing has evolved over the past years from research and slowly reaching into the commercial space.

As more people become aware of Grids, the types of computational environment has also changed. On one

hand, large scale collaborative Grids continue to grow, allowing both intra and inter organizations to access

vast amount of computing power, on the other hand, increasing number of individuals are starting to take part in

voluntary computations, involved in projects such as Seti@Home or Folding@Home. Commercial organizations

are also beginning to take notice of the potential capacities available within their organization if the workstations

are aggregated into their computing resource pool.

This increase in awareness, has lead to various products, both in research and commercial, that handle

resource allocation and scheduling of jobs to harness these computation powers. Products such as Platform

LSF [1] or the Sun Grid Engine [2] provide algorithms and strategies that handle Dedicated Grid Computing

Environments (GCE) well, but is unable to work optimally in Desktop Grid environments due to the high rate

of resource failures. The same applies for technologies such as United Devices [3] or XGrid [4], whereby although
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it excels in Desktop Grid (EG) environments, is unable to provide the same level of performance in Dedicated

Grid (DG) environments. This is due to the assumptions made on the possibly high failure rates, resulting in

simple scheduling algorithms used in such systems.

Given the ability to preemptively know about failures and to handle it adequately would allow the rise of a

new class of scheduling algorithms that is able to prevent job failures resulting from the failure in the execution

environment. Coupling this with the fact that handling job failures can help to reduce the turn-around time

for a successful job completion, it would be then possible to create large scale scheduling algorithms where it is

able to e�ectively estimate and allocate jobs to resources that can ful�ll its task with minimal interruptions and

re-scheduling. This will ultimately result in higher throughput, and a higher level of quality for jobs submitted

to Grids. This motivates us to invent new strategies that take into account the failure possibilities to render

the best services.

2 Related Works

We classify the current available work on Grid failures into pro-active and passive mechanisms. By pro-active

mechanisms, we mean algorithms or heuristics where the failure consideration for the Grid is made before

the scheduling of a job, and dispatched with hopes that the job does not fail. Passive mechanisms identify

algorithms that handles the job failures after they have occurred. While there are existing works that looks at

failure handling in the literature such as [6, 5] in other �elds of engineering, most of these are not related to

Grids. Many of these are also more complex requiring a large amount of information otherwise unavailable in

a GCE.

Of those that look into the issues of failures within the Grid, many works are primarily passive in nature

and deal with failures through Grid monitoring as mentioned in [10] and [8]. These methods mainly do so by

monitoring for failures followed by either a checkpoint-resume or terminate-restart [15, 11, 12, 13]. Two passive

failure mechanisms are introduced in [14, 21] and [16]. While [14, 21] operates by replicating jobs on Grid

resources, [16] only looks at volunteer Grids. The former can possibly lead to an over allocation of resources,

which will be re�ected as an opportunity cost on other jobs in the execution queue. The latter addresses

independent task executing on the resources, however, it does not address how these resources can potentially

co-operate to run massively parallel applications.

In the literature referenced above, there have been limited proposals on the resource model suitable for Grids

and the underlying mechanism to prevent failures of jobs in Grids by pro-actively estimating the state of the

Grid prior to job dispatching. Other pro-active and dynamic fault-tolerant scheduling proposals such as [17]

focus more on job reliability than on maximizing the total availability of resources with in the Grid. This results

in a reduction in the total capacity of the Grid, very similar to replication based techniques. In [18], a mechanism

to determine suitable candidate schedules based on Bayesian Networks and Genetic algorithms is introduced

to modify candidate schedules. We �nd that this is highly complimentary to our proposed strategies, and can

potentially be used to reduce run-time prediction errors within our algorithm. However, this is not demonstrated

here as our proposal focuses on how we can propose a valid strategy based on minimal learning. A simple-state

based and �ltering model to handle prediction in computational Grids was also presented in [8]. While the
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method works well in simplicity and looks at the reliability of a computational resource, it does not take into

account additional un-certainties of recovery. Our proposed model proposes an alternative of how potentially

well studied models of failures can assist in prediction failures in GCEs by making use of existing ideas and

models. These can then continue to be further enhanced, perhaps using well established work, to create simple

�ltered models of pro-active failure handling to detailed analysis of individual node failure predictions.

[7] looks at the availability prediction of �ne-grained cycle sharing systems using a Semi-Markov Process

model. While this method has been shown to be e�ective, we agree more with the model presented in [9] as it is

simpler and looks at more basic states and thus easier to implement. [9] looks at model �tting using parametric

and non-parametric methods for predicting machine availability in a desktop Grid. While the parametric

methods increases in complexity as conditions increase, non-parametric investigates the failure models based

on a given statistical distribution. This di�ers from our proposed strategy as we view the probability of failure

as independent events. The measurements in [9] also investigates only the accuracy of prediction on resource

lifetime for desktop Grids. We di�er in our strategy and experimentation by including job characteristics and

simulating in other common GCEs such as to achieve a better job allocation schedule.

3 Scope of this work & our contributions

In this paper, we conclusively show that through pro-active failure handling, it is possible to improve the

behaviour of existing scheduling strategies and algorithms such that it is able to prevent job failures during

execution. We introduce pro-active failure handling strategies which allows existing scheduling algorithms to

be modi�ed to avoid job failures upon scheduling. Three strategies are introduced, namely (1) Site availability

based allocation (SAA), (2) Node availability based allocation (NAA), and (3) Node and Site based allocation

(NSA) strategies. These are then augmented into the back�ll scheduling algorithm and the replication scheduling

strategy. The modi�ed and unmodi�ed algorithms are then compared. We further introduce an extension of

the co-ordinate based resource allocation strategy presented in [23]. We clearly show the improvement in job

reliability by introducing pro-active failure handling to this algorithm using the proposed model.

In section 4, we �rst highlight how we estimate the resource availability of the Grid. The simulation

environment is then described in section 5. This is followed by section 6, describing how these results are used

to formulate the pro-active failure handling mechanisms for existing algorithms. The results are then discussed

in 7. The conclusion of the study then follows in section 8.

4 Estimating Resource Availability

In this paper, we de�ne Failure to be the breakdown of communication between computing resources, thereby

leading to a loss in status updates in the progress of an executing job. This failure can be due to a variety of

reasons such as hardware or software failures as stated in [10]. In our proposed strategy, we do not speci�cally

identify the cause of the failure, but generalize it for any possible kind. This is because while di�erentiating

between di�erent forms of failure might be useful in prevention during implementation and system recovery, we

feel that inability to account for failure during allocation will still cause a slow-down in job completion time if
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it is to occur in the midst of job execution. This could be avoided if the system is made aware of it. As our

proposal looks at being able to pro-actively avoid failure issues during the allocation process with minimum

complexity, we �nd this generalization acceptable in view of failure avoidance. This pro-active strategy can then

be used together with a passive failure mechanism to recover from the di�erent types of failure, such as those

stated in [10], if required to do so. We also look upon a failed resource as one that will have to be restarted and

all history of past executions be cleared without checkpoint.

We also use the phrase �availability of the nodes� and �capacity of the system� interchangeably. This is taken

from a point of view where every node meant to be in the GCE will contribute a certain set of resource that

would a�ect the capacity of the GCE. A change in availability of the nodes thus a�ects the capacity of the

GCE. Capacity in this case refers to the GCE state consisting of processing, memory and/or disk capabilities

to assist in completing jobs sent into the Grid. In the event where there is a change in the contribution of

resources during di�erent phases of availability, a single physical system, or �real� node, can be modeled as

multiple �virtual� nodes. Each of the �virtual� nodes, would then go on or o�ine during the di�erent phases

of its life-cycle, a�ecting the capacity of the GCE. In either case, the scheduling system would not make any

di�erentiation between �real� or �virtual� nodes, and consider all �virtual� nodes as individual �real� nodes.

�Virtual� nodes of a single �real� system will continue to have describing characteristics that would relate them

to each other, forming a set of closely related resources. This this case, jobs passing through the scheduling

system can then be potentially ran in the GCE the same way.

In order to build a model for resource availability, we �rst de�ne the various stages of availability that it

needs to go through from the perspective of an external agent. We place these stages in the following order:-

1. Resource coming online

2. Resource participation in Grid Computing Environment (GCE)

3. Resource going o�ine

4. Resource undergoing a o�ine or recovery period

5. Resource coming back online (return to �rst stage)

We do not identify the reason why the resource has gone online or o�ine from the view of the external agent.

The agent, however, does register that if the resource goes o�ine, the possibility that any process that has been

executing on that resource could possibly be interrupted and might not be restored. Unless the mechanism of

execution allows for some form of check-point or recovery, the past computation cycles on the machine can be

assumed to be lost.

Taking these 5 stages viewed by the external agent, and generalizing the states of the resource on the GCE, we

easily classify that a resource has entered a state of a general failure or has recovered from its unavailable failed

state. Thus, under these assumptions, from the resource perspective, we similarly break down the participation

of a resource in a GCE into the following stages:-

1. Resource becomes available to the GCE

2. Resource continues to be available pending that none of the components within itself has failed
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Figure 1: Resource Life Cycle Model for resources in the GCE

3. Resource encounters a failure in one of its components and goes o�ine for maintenance and �x

4. Resource goes through a series of checks, replacements or restarts to see if it is capable to re-join the GCE

5. Resource comes online and becomes available to the GCE (return to �rst stage)

From the above, it was observed that in Stages (2) and (4), the resource undergoes a period of uncertainty.

This uncertainty stems from the fact that the resource probably might not fail or recover for a certain period

of time. Based on these stages the model presented in [19] was constructed. The Resource Life Cycle (RLC)

Model shown in Figure 1 identi�es the stages where by Grid resources under-go cycles of failures and recovery,

and also accounts for the probabilities of each resource being able to recover or fail in the next epoch of time.

Thus using this model, we are able to describe any general form of resource failure that would cause an external

agent to lose job control or connectivity to the said resource.

4.1 Pro-active Failure Handling versus Passive Failure Handling

In most of the mechanisms that improves the resilience of a scheduling strategy, it has been observed that steps

were taken to re-schedule a troubled job, or replicate jobs hoping that one of them is successful. Mechanisms

such as those in [15, 11] works in this fashion. In general, it was observed that the handling of failures by

allocation strategies can occur either before the actual allocation itself, or after the allocation of the resources.

We term these methods as Pro-active or Passive methods respectively.

While Passive methods using techniques of job monitoring are relatively easier to implement, Pro-active

methods require more information from the GCE and works in a probabilistic fashion. While there exist pro-

active methods such as replication where the decision of how to address possible failures in the GCE are made

before the job is executed, we �nd that such static mechanisms are unable to cope with the dynamism of the

GCE. An e�ective pro-active strategy should provide a way, with all information considered, deny any job from

any possible failures. This potentially reduces the failure rates within a GCE, and also increases the capacity

and throughput in a system. This is unlike passive methods where re-submission of jobs typically leads to a

decrease in throughput in the system. It is, however, worth while to note, as shown in Figure (2), that both
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Figure 2: Passive and Pro-active mechanisms used to handle failure
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pro-active and passive methods are not substitutes to each other, but rather, they are complimentary. One

will never be able to fully predict the state of the GCE, and every pro-active method will have cases where it

is unable to accurately re�ect the state of the GCE. It is thus bene�cial to continue to include passive failure

handling mechanisms to assist in such situations.

4.2 Mathematical Modelling

In order to construct a pro-active scheduling strategy, we �rst construct a mathematical model based on the

above mentioned Resource Life Cycle so as to be able to predict the capacity in a GCE given a total �xed

number of resource that can possibly participate in the environment. The purpose of the mathematical model

is to allow us to answer the following questions:-

1. How many nodes, as an estimate, would there be in the Grid at a certain time?

2. What is the probability of a job being able to complete its execution?

Addressing these two important questions will allow our strategy to dispatch jobs only to resources that will

more likely guarantee the successful completion of the job, and know ahead the likely capacity of the GCE at

a point in the future.

We �rst de�ne the following notations and de�nitions associated with them:-

• MTTFj and λ
F
j : The Mean Time to Failure represents the average amount of time a resource is available

to the GCE before going o�ine. We also term the average rate of failure to be λFj = 1
MTTFj

. Where j

denotes the node index in the GCE.

• MTTRj and λ
R
j : The Mean Time to Recovery represents the average amount of time taken for a resource

to rejoin the GCE after going o�ine. We also term the average rate of recovery to be λRj = 1
MTTRj

.

• τ , τDj and τUj : τ represents a speci�c time instance after the time period T , while τDj and τUj are de�ned

as the duration of the state times of the jth node in either DOWN or UP states. We note that for a node,

if τDj > 0 then τUj = 0 and vice versa.

• ST : The number of nodes available for a period of time T .

• MT : The number of nodes unavailable for a period of time T .

• KT : This equals to the total number of nodes in the GCE that we would like to consider, and KT =
ST +MT , for all values of T .

• Pj : Denotes the resource reliability is a single value representing the likely-hood of a resource staying

online at any given time. This value is in�uenced by information such as the resource availability pattern

to the GCE, the reliability of the various components in the resource and the reliability value provided by

the creators of this resource.
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• Qj : Denotes the resource unrecoverability is a single value representing the likely-hood of a resource

recovering from its o�ine state at any given time. This value is in�uenced by information such as resource

unavailability pattern to the GCE, the di�culty to replace parts in the resource that has failed and the

service level provided by the creators of this resource.

• PrUPj and PrRECj : The probabilities of a resource remaining in its UP, or online, state and recovering

from its DOWN, or o�ine, state respectively.

Note that the MTTF and the MTTR values are collectively termed as MTT values in the rest of this paper.

The above questions can now be paraphrased more speci�cally as:-

1. How many resources are there at T + τ time given that there are ST resources available and MT resources

unavailable at time T?

2. What is the probability of a set of resources staying up over a period of time τ?

The answer to these questions will allow one to estimate the capacity of the Grid in the future. It would also aid

us to approximate the likely-hood of a successful job completion when dispatched to a known group of resources.

Alternatively, one can also choose to dispatch jobs only to resources that are likely to remain available to ensure

successful job completion.

We note that in the RLC model, a resource can have exactly one failure or recovery before it switches its

state from being online to o�ine, or vice versa. We also note that if given that the MTT , P and Q values are

reliable, the duration of a resource being online would highly a�ect the probabilities of a resource remaining in

steady state.

We assume that each event of a state switch is independent of each other. This is a reasonable assumption

when we consider a very small instance in time between τ − 1, τ and τ + 1.
Using the Poisson Distribution to model the event of a single independent change in state, we obtain the

probabilities of this event as the following:-

• Probability of a failure on node j due to MTTF after period of UP state at τUj is given by,

(
1

MTTFj

) τU
j∑
t=0

e−(λF
j t)(λFj t) = λFj

τU
j∑
t=0

e−(λF
j t)(λFj t) (1)

• Probability of a resource recovery on node j due to MTTR after a period of DOWN state at τDj

(
1

MTTRj

) τD
j∑
t=0

e−(λR
j t)(λRj t) = λRj

τD
j∑
t=0

e−(λR
j t)(λRj t) (2)

In addition to a resource changing states due to the MTT values, it has to be noted that there are other

factors that could cause a change in state which was represented by Pj and Qj . As the probabilities of Pj

and Qj are independent from the MTT values, it is possible to obtain these values for a single jth resource.

Therefore, its probability of remaining in its UP or DOWN state can be immediately realized as:-

• Probability of a resource j remaining in its UP state at τUj
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PrUPj = 1− λFj (1− Pj)
τU

j∑
t=0

e−(λF
j t)(λFj t) (3)

• Probability of a resource j recovering from its DOWN state at τjD

PrRECj = λRj (1−Qj)
τD

j∑
t=0

e−(λR
j t)(λRj t) (4)

Considering that there is a set of n resources where 1 ≤ n ≤ ST , the probability of this set of resources

remaining in the UP state at T + 1, will be given by,

PrUP {nT+1} = 1−
n∏
j=1

λFj (1− Pj)
τU

j∑
t=0

e−(λF
j t)(λFj t) (5)

Similarly, for a set of n resources where 1 ≤ n ≤MT , the probability of this set of resources recovering from

its DOWN state at T + 1, will be given by the following equation.

PrREC{nT+1} =
n∏
j=1

λRj (1−Qj)
τD

j∑
t=0

e−(λR
j t)(λRj t) (6)

Equations (5) and (6) suggest a methodology whereby it is possible to estimate the number of resources

available at (T +1). Under the assumption that the resources remain in constant state within τ period of time,

it is possible to extend equations (5) and (6) to estimate the probability of PrUP and PrREC at time (T + τ).

This is captured by equations (7) and (8) respectively.

PrUP {nT+τ} = 1−
n∏
j=1

λFj (1− Pj)
τU

j +τ−1∑
t=0

e−(λF
j t)(λFj t) (7)

PrREC{nT+τ} =
n∏
j=1

λRj (1−Qj)
τD

j +τ−1∑
t=0

e−(λR
j t)(λRj t) (8)

From the RLC model and equations (7) and (8), it is therefore possible to estimate the number of resources

available at ST+1 as STPr
UP {ST+1} + MTPr

REC{MT+1}. This can be further extrapolated to obtain an

estimate on the number of resources available at ST+τ given by equation (9).

ST+τ = STPr
UP {ST+τ}+MTPr

REC{MT+τ}+ eT (9)

In Equation (9), eT is the error adjustment in prediction based on the average historical error predictions

made. This can be easily captured by recording and taking the average of the di�erence between the number of

resources predicted to be available at T and the actual number of resources available at (T + 1). Equation (9)

ultimately states that the number of UP nodes available at (T +τ) is the sum of the number of nodes staying up

and recovering at time (T + τ − 1). PrUP {ST+τ} and PrREC{MT+τ} are the probabilities of a node staying in
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the UP state and recovering from a DOWN state at time (T + τ) respectively. This enables us to approximate

the acceptance of a job and subsequently run it at any point of time in the future.

While simulations of the prediction mechanism based on (9) has shown to be able to estimate the number

of resources in a Grid Computing Environment (GCE) within the bounds of ±21. It is clear from the equations

that this, however, requires analysis of each resource and can be unwieldy in both computation and information

required. The advantage remains, however, that all equations leading up to Equation (9) provide a way to

approximate the availability of a single or a group of resources.

In seeking a less computationally intensive mechanism to estimate the number of resources, it was noted

that the MTT values alone were able to estimate the capacity of the GCE over a long period of time. The

resulting GCE capacity obtained shows that the average availability of the GCE can be estimated by using

the General Availability Equation (GAE)
P
MTTFP

MTTF+
P
MTTR . This provides the average capacity in the GCE,

allowing the allocation strategy to be able to de�ne an upper limit to the number of resources requested by

the job at the point of submission. This also prevents users from over-requesting resources thereby leading to

failures that can a�ect throughput. However, while the GAE provides the average number of resources in the

GCE, the shortcoming of the GAE is that it does not provide any information as to which resource will be

leaving or rejoining the GCE. This lends itself to be unable to determine the availability of a speci�c set of

resources within the GCE.

4.3 Comparing Replication and Prediction

In this section we theoretically compare the di�erence between two pro-active allocation strategies, namely (1)

Replication and (2) Prediction. We show that it is meaningful to try to approximate the capacity of the GCE

before job submission and how it bene�ts the allocation strategy if it attempts to do so.

4.3.1 Replication

Assume that a GCE consists of S resources. It is required to process a queue containing J number of jobs

requiring T amount of time to process. Given that the value of GAE is α, the e�ective capacity of the GCE

would be represented by αS. In the case of job replication, a job is submitted K times into the GCE (where

K ≥ 2) . This results in the GCE being unable to execute any job requests for exactly S resources, thereby

limiting the maximum capacity by a factor of 1
K . The maximum load of the GCE accounting for its e�ective

capacity is thus given by Sα
K . Assuming further that the real expected time of each job j to complete is ET [j]

and the theoretical time required for the job to complete its execution is HT [j], we can conclude that if the

requested load Lj ≤ Sα
K , there would be enough capacity in the GCE to be able to execute all the replicas of

the job at the same time. If j is successfully executed, it is noted that ET [j] � HT [j]. If the MTT values of

the replica set is identical to that of the GCE, the probability of all replicas failing will be given by (1− α)K .
It is clear to note that the probability of any replica to succeed is 1−K(1− α). It is observed in Figure 3 that

increasing the replication factor of K results in the rate of the probability of j to succeed in its execution also

1This value was determined by passing a GCE based on the resource availability model going through the stages of �gure 1
through a prediction cycle and capturing the real and predicted results. This error can perhaps be further adjusted by making use
of GA based methods as shown in [18].
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Figure 3: Probability of success versus α under varying replication factors K

by K, However, this bene�t in replication is o�set by the fact that the GCE is required to satisfy α = (1− 1
K )

before this advantage is realized. This de�nes a requirement on the GCE to satisfy this criteria. It is to be noted

that as K increases, the site availability required for any of the job replica to succeed also increases. We �nd

this conclusion consistent with many other experiments that demonstrate that the best level of job replication

is when K = 2, providing the best balance between the requirement of the GCE versus the level of improvement

when replicating.

In the event where the requested job load Lj ≥ Sα
K , Lj and its replicas will not be able to execute at the

same time. Instead, the replicas would queue in the GCE and be executed in a serial fashion. The replicas will

only be able to execute simultaneously, at an instance in time whereby Sα
K = Lj . This will however be highly

subject to failure as the expected GCE capacity is less than that of Lj . In the best case, the �rst replica will

complete and ET [j] = HT [j]. In the worse case, ET [j] � KHT [j]. Assuming that the average time to complete

any job j under these circumstances is ( 1+K
2 )HT [j], we can e�ectively conclude that the average time taken

to process the entire queue will be T = J( 1+K
2 )HT [j] , which is on the average 1+K

2 times longer than the

theoretical time. This e�ectively decreases the throughput of the GCE which is given by 2
HT [j](1+K) .

In both circumstances of job replication shown above, it was established that such a strategy always results

in either a lowered capacity in the GCE, or a reduction in throughput in the GCE, and in some cases, both.

4.3.2 Prediction

Assuming a similar setup of a GCE as that used above, the e�ective capacity of the GCE continues to be Sα

where α is the GAE value obtained for the entire GCE with J jobs. For the sake of prediction, we introduce

the probability that a wrong prediction will be made for each resource Er. We further assume that a wrong

prediction on a resource will always result in a failure. We maintain that the expected time for a job j to

11



Figure 4: Probability of success Pr versus Er under varying division factors k

complete continues to be ET [j], while the theoretical time for it to complete is HT [j]. Given that j will be

divided into k nodes for execution, where 2 ≤ k ≤ S, the probability of a job succeeding in its execution is

dependent on all the subdivisions successfully executing. This is given by Pr = (1−Er)k as shown in Figure 4.

In the �gure, it is noted that the probability of success for each job j depends on the factor k. This is

consistent with the fact that the more a job is divided into di�erent resources, the more likely it is to fail. We

also note that this probability of success is not a�ected by the capacity S of the GCE and does not impose a

minimum requirement of the GCE to be available before a job can succeed in execution. It is noted that errors in

prediction result in an exponential decline in the probability of success of j. When prediction is used with other

failure detection techniques and subsequently re-submitted for R number of times, the probability of success is

improved by a factor of R. The probability of success is thus changed to Pr = R(1−Er)k. A variation of Pr is

shown in Figure 5. We note that the resubmission of j by R = 2 can result in a de�nite completion of j when

Er is 0.15. This threshold of prediction error is even higher when k = 2, meaning that even a prediction error

of 0.25 when split over two resources can almost absolutely result in a successful execution of j. Once again,

this certainty varies from job to job and is not dependent on the capacity of the GCE as long as Lj ≤ Sα.
This certainty allows one to be able to choose the R factor considering the type of workload the GCE is

subjected to. If given that all jobs in J has k ≤ 4, it can be then decided that a R = 4 with Er = 0.25
will result in all jobs being completed in the queue with T < JRHT [j]. The throughput of such a strategy is

therefore equal or greater than 1
RHT [j] . The actual throughput is once again dependent on the workload model

applicable in the GCE. However, it is noted that, as prediction operates independently of the variables required

in replication, these two strategies can be used together to improve the successful throughput of the GCE.

From the above comparisons, we can clearly see that the ability to predict the resource states does not act
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Figure 5: Probability of success Pr versus Er under varying R with division factor k = 4

as a substitute to existing strategies. This is due to the fact that prediction does not depend on site capacity

but rather on the accuracy of the prediction and the workload model in the GCE. This results in the ability

for prediction mechanisms to enhance existing strategies to assist in the assurance of the completion of a job,

while trying to make use of the entire site's capacity. When both pro-active and passive methods are combined,

premature job terminations resulting from environment failures should be considerably reduced.

5 Simulation Environment

In our experiments, we use a workload model based on [22] to generate synthetic workloads consisting of both

massively parallel and embarrassingly parallel jobs.

We investigate several operating environments in order to ascertain the di�erent performance that will be

exhibited under various circumstances. We map the simulations based on table 1. We base these environments

on the fact that it is possible to distinguish GCEs into Dedicated Grids, Desktop Grids and Hybrid Grids. The

general availability levels of these GCEs are stated as a �xed index but is randomly generated for every node in

the environment. These normally generated values for the entire site has a mean of the availability value and

a variance of 0.2. This provides a �uid environment where by actual MTTF and MTTR values are unknown

but the expected performance of the site is known.

We refer to Dedicated Grids as those that are pre-planned and negotiated. These Grids are typically made

up of servers, clustered computers and super-computers. Dedicated teams of people or organization are also

usually tasked to ensure the availability of these resources. This results in high expectation of the resources

being on-line and the Grid capacity is usually known. Such GCEs are usually results of high level collaborations
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Type Availability Run-Factor
Dedicated Grid (DG) 0.9 [0.1, 0.01, 0.001]
Desktop Grid (EG) 0.3 [0.1, 0.01, 0.001]
Hybrid Grid (HG) 0.5 [0.1, 0.01, 0.001]

Table 1: Table of Simulated Environments

between institutes. Examples of such Grids include the UK e-Science Grid2, the Asia-Paci�c Grid3 as well as

the NC BioGrid4. We assume the availability of such grids to be 90%. We assume that 10% of the time when

resources are unavailable is due to maintenance, service outages, software upgrades and any other elements that

might contribute to connectivity issues to other GCE resources worldwide.

Desktop Grids operate in an environment that is more dynamic and voluntary. Such Grids operate very

much in a peer-to-peer fashion, where resources join or leave the Grid without any pre-arranged schedule. These

Grids are typically made up of desktops or portable devices and are participated by users who do not usually

know who else is also providing computation capability to the cause. The true capacity of such a GCE is thus

hard to obtain at any instance in time as these computational resources can go o�ine regardless of the job

state allocated. Examples of such Grids include Seti@Home5, Korea@Home6 and Folding@Home7. Availability

values of such grids can �uctuate given the type of users participating in the GCE. In our case, we assume

that participants of such GCEs would be home users who power o� their resources at the end of each day.

If the home user is to provide their computing resource for 8 hours a day, corresponding to the amount of

working time in the day, this would result in approximately 30% availability of the resource to the Grid. If this

assumption is stretched to include users worldwide, the average availability would continue to hover around 30%,

at times providing more or less in transient depending on the timezone. In our simulations, based on the selected

workload model, this assumption of an average availability of 30% availability seems to be consistent. Even if

more resources are available in transient, the frequency of failures of these resources will result in the jobs within

the workload undergoing extremely high number of failures. The assumption of 30% availability of resources

within the EG GCE provided the best trade o� allowing the simulated workload to complete its simulation time

within reasonable time. This serves as a good estimate of the performance levels of the algorithms in such a

GCE.

Hybrid Grids are Grids that we envision the future of Grids to become, given that this is an environment

where both dedicated and voluntary resources will co-exist within a large computing resource pool. Such a Grid

allow jobs to make use of dedicated computing resources, at the same time make use of a large dynamic pool

of desktop resources when the job's applications determines that it is possible to do so. The assumption made

is that there is a 3:7 ratio between DGs and EGs in such a GCE in the future. We take the capacity of such

GCEs to be approximately 50%.

In our simulations, each of these type of execution environments are tagged with environmental availability

2http://www.grid-support.ac.uk/
3http://www.apgrid.org/
4http://biogrid.icm.edu.pl/
5http://setiathome.ssl.berkeley.edu/
6http://www.koreaathome.org/
7http://folding.stanford.edu/
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values such that the average availability values are maintained. This however does not dictate the state of

resources at any point of time.

The Run-Factor of the simulated environments describes the ratio of the maximum simulated runtime of a

job to the mean MTTF values. As workload models usually generates workloads that have much lesser jobs

requiring very long run times, this value is used to induce situations where there will be a high volume of job

failures in the environment. It is noted that we do not present the simulation results when the Run-Factor ratio

is 1 as this will result in the maximum simulated runtime of the job to be equal to that of theMTTF . In which

case, we observe no job failures in many of our simulations and is thus unable to study the e�ects of the various

pro-active failure handling schemes.

5.1 Performance Indicators

In order to measure the performance of the modi�ed algorithms, we capture the job failure and rejection

rates in each run. We de�ne a job to have failed when its execution is terminated due to a resource fail-

ure. A job is rejected when its resource request exceeds what is stated available in the scheduling algorithm.

The job processing rate was also captured as an indication of throughput of the resulting algorithm. The

TotalQueueCompletionT ime is given as the time it takes for the �rst job to enter the GCE, till the time where

the last job leaves the GCE. We compute the various indexes as follows.

1. Job Processing Rate (JPR):

JPR = NumberOfJobsSuccessfullyCompleted
TotalQueueCompletionTime = JSuccess

TQ

A higher JPR will indicate larger number of successfully completed jobs or a lower queue completion

time. A high JPR will therefore indicate that an algorithm is capable of high throughput.

2. Job Failure Rate (JFR):

JFR = NumberOfJobsFailedAtRuntime
TotalQueueCompletionTime = JF ail

TQ

A low JFR is desired as it signi�es the number of jobs failing during the course of its queue comple-

tion is low. This indicates that a strategy is able to allocate resources will to reduce the number of jobs

failing in its course of execution.

3. Job Rejection Rate (JRR):

JRR = NumbeOfJobsRejected
TotalQueueCompletionTime = JRej

TQ

A low JRR indicates the ability of an algorithm to handle all types of jobs submitted to the queue

based on the workload model used. A high JRR will therefore mean that the algorithm is unable to

execute jobs due to insu�cient capacity. A low JRR is thus desired to indicate that an allocation strategy

is able to handle the workload presented using the workload model.
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6 Improving Resilience of Existing Algorithms

From Section 4, we have obtained two mechanisms whereby it is possible to pro-actively circumvent the pos-

sibility of failures during the course of job execution. This is achieved by (1) making use of individual node

MTT values and predicting the availability of each node over a course of time τ , or (2) by using the GAE

to obtain the long term capacity of the GCE. In both cases, once the expected capacity or the prediction of

availability is available in the scheduling mechanism, it is possible for the scheduler to make informed decisions

in its execution schedule. This is inherently di�erent from other passive techniques [16, 15, 14]. While passive

mechanisms, the scheduler is typically unaware of the Grid state prior to scheduling and only reacts to job

failure when it detects abnormalities in the job, pro-active mechanisms allocates jobs based on past and existing

states of the Grid. It does so in a manner that it best avoids any possible event of failure that can occur when

the job is submitted.

6.1 Pro-active failure handling strategies

In this section, we introduce 3 pro-active strategies to assist in job allocation to avoid job failures. They are :

1. Site availability based allocation (SAA strategy)

In this method, we make use of the GAE to estimate the largest job that the GCE is capable of accepting

in the long run and reject the submissions of job requirements that are larger then the GAE computed

capacity. This acts on the fact that resources are wasted when jobs that are allowed into the GCE

fail during their execution. This avoidance of jobs that can cause this situation will therefore allow the

remaining jobs to have a higher probability in executing successfully.

2. Node availability based allocation (NAA strategy)

We make use of Equation (7) in this mechanism to obtain a sorted set of nodes with decreasing probability

of staying in the UP state over a jobs expected runtime. Jobs are then only allocated to this set of nodes in

order to ensure a higher probability of completion. This strategy tries not to cause a synthetic reduction

in the number of resources available in the GCE as it tries to utilize all available resources at any point

of time. This is unlike mechanism (1) where the estimated capacity will always be less then that of the

total GCE capacity.

3. Node and Site based allocation (NSA strategy)

This method combines mechanism (1) followed by (2) in order to �rst ensure that the job requirements are

realistic in view of the long term availability of the GCE, followed by a resource allocation strategy such

that the resources the job is dispatched to will have a higher probability to complete its execution. We

use this strategy to observe if there is any signi�cant advantage in the increase in allocation complexity

versus results.

Based on these strategies, we will modify existing algorithms to ascertain the performance for each of these

allocation schemes. In addition, we will propose an extension to the algorithm proposed in [23] by the addition

of a probability dimension. We discuss the modi�cations to the algorithms in section 6.2.
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6.2 Modi�cations to Algorithms

In order to verify the capabilities of pro-active failure handling within scheduling algorithms, we implemented

SAA, NAA and NSA into the following algorithms for comparison:-

1. Back�ll Algorithm [20] (BF)

2. Replicaiton Algorithm [21] (REP)

3. Multi-Resource Scheduling Algorithm [23, 24] (MRS)

In the above algorithms, BF and REP were selected as they are well known algorithms. BF serves as a baseline

for comparison, allowing us to observe the advantages in implementing pro-active failure handling techniques

in traditional algorithms for GCEs. The REP algorithm is implemented with a replication factor of 2. This

provides a mechanism that allows us to be able to observe the advantage of combining predictive mechanisms

with more common failure prevention techniques.

The MRS algorithm we have presented in [23, 24] was also extended as a novel approach to allocating

resources with considerations of availability in the GCE. MRS is a scalable multi-dimensional strategy where

by resource and network capacities are taken into consideration together with job requirements to derive a

allocation schedule. The extension to MRS was simply done by extending an additional dimension within MRS.

We refer to the modi�ed version of MRS as 3D-MRS. This additional dimension is included as a Availability

Index ranging between 0 and 1. This corresponds directly to the PrUP for each resource. In a similar fashion

described in [23, 24], resource selection under MRS is based on the minimum euclidean distance to the origin

based on values provided by all three axes. This allows us to consider factors such as computation, data as well

as availability provided by that of a GCE resource with only linear increase in computational complexity of the

allocation strategy.

In all three cases, SAA was implemented with no change in the scheduling strategy other than adding a

�lter before the actual allocation stage within the algorithm. This serves as a �lter point that rejects jobs

that exceeds the GAE percentage value of the GCE. In BF and REP, the NAA strategy was implemented by

computing the PrUP value of all the available GCE resources in the period of τ de�ned as the runtime of the

job. These values are then sorted in a decreasing order. Jobs are then allocated to these resources in the order

sorted so as to provide allocation to resources that are more likely available. For MRS, NAA was implemented

as a third dimension to the allocation strategy and the resource availability considered during the computation

of the euclidean distance determining the �goodness of �t� to the intended resource. As described in [23, 24],

the lower this value is, the better the de�ned resource is for allocation.

The NSA strategy for BF, REP and MRS are implemented as a combination of SAA and NAA. A �lter is

used to �rst reject jobs requesting for resources greater than the computed value of general availability of the

GCE, and the availability of the individual nodes computed and sorted to obtain the nodes that are predicted

to be more likely available. Jobs are then allocated in the order similar to that in the NAA strategy.
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7 Results and Discussions

Based on the setup in Table 1, we setup a simulated GCE to generate resource failures to achieve the required

capacities. The results are shown in Figure 6, 8 and 7. We normalize8 the results to that of the unmodi�ed BF

algorithm in order simplify the comparisons between the various strategies.

It would be interesting to note that in Cluster/HPC-like systems, the e�ect of the addition of pro-active

failure algorithms to standard algorithms should not di�er much. This is because the strategy is based on the

availability of the GCE and is additive in nature. It is the base allocation algorithm that continues to derive the

optimal schedule to allocate resources matching the allocatable jobs. We would expect that the base algorithm

implemented for job allocation would execute more e�ectively, potentially increasing the job processing rates

due to closer proximity. However, if the allocation algorithm, such as MRS is able to inherently consider the

match between job resource requirements and node failure prediction, we would expect the JPR to further

improve and the JFRs to further decrease.

7.1 Performance of the unmodi�ed algorithms

From the results, it is noted that there is always an improvement in JPR when comparing the unmodi�ed

version of MRS to that of BF within all three simulated environments. In DGs, we also note that the JPR of

MRS is about 20-30% better than that of BF. This is consistent with our results presented in [23, 24]. It is

noted that in some cases, where the JFR data is not available, the value of that is 0.

We also note that while REP might not always provide a higher JPR, its JFRs is consistently better than

that of BF in all simulated environments. This again, is consistent with our expectation that replicating jobs

should provide a greater likely-hood of job success. However, it is clear that this is done at the expense of

throughput due to the e�ectively reduced capacity of the GCE due to replication.

It is noted JRRs in all simulated environments �uctuates. This is due to the fact that the changes in JPR

and JFR can result in instances whereby there are more resources in the GCE at di�erent instances in time.

However, it is clear from the comparisons of the unmodi�ed algorithms that both REP and MRS outperforms

BF in terms of JFR and JPR. We also observe a much lower JRR with MRS compared to the other strategies.

This can be due to the increase in throughput, thereby allowing more resources to be available in a shorter

period of time.

7.2 Performance of the modi�ed algorithms in a DG environment

From the graphs shown in Figures 6, we observe that under a DG environment, BF is not able to derive much

bene�t from NAA. Making use of SAA or NSA type strategies however provides at least a 40% improvement in

JFR and possibly increasing JPRs by up to 30% when Run-Factors are low. This can be due to the fact that

DG environments tends to be online far longer than the MTTF of the resource. Thus, predictions of exactly

when a node will fail does not provide as much advantage as limiting the average resources available based on

the entire site, as in the SAA and NSA strategy. The simulations also show that there is de�nite improvement

in the assurance of job completion when pro-active strategies are introduced.

8Note that the pre�x of �N� before JPR, JFR and JRR represents �Normalized�
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(a) DG Environment with Run Factor 0.1

(b) DG Environment with Run Factor 0.01

(c) DG Environment with Run Factor 0.001

Figure 6: Simulation results for DG under di�erent Run-Factors
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(a) EG Environment with Run Factor 0.1

(b) EG Environment with Run Factor 0.01

(c) EG Environment with Run Factor 0.001

Figure 7: Simulation results for EG under di�erent Run-Factors
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(a) HG Environment with Run Factor 0.1

(b) HG Environment with Run Factor 0.01

(c) HG Environment with Run Factor 0.001

Figure 8: Simulation results for HG under di�erent Run-Factors
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The bene�t of pro-active methods are also observed when introduced to the REP algorithms. In high Run-

Factor situations, it is observed that although NAA type strategies are not able to reduce JRRs perhaps due

to mistaken estimates in capacities in the GCE, the SAA strategy is able to show better performance through

lowered JRRs values under this cirumstances. This is due to better management in resources, allowing more

jobs to run before the simulation terminates. However, under Run-Factors of 0.01 and 0.001, we observe that the

NAA type strategy performs marginally better than SAA. This can be due to the percieved changes in resource

states that is not predicted accurately in situations where Run-Factors are 0.1. NSA, in general, derives its

performance gains as a combination of SAA and NAA. This can be observed in the marginal improvements

in the NSA strategy compared to either SAA or NAA. This is once again consistent to the additive nature of

predictive pro-active failure handling strategies to other forms of failure handling techniques.

In the operation of 3D-MRS in DGs, we observe little bene�t in the use of all three pro-active failure handling

techniques. In fact, in high Run-Factor situations, the NAA strategy causes a higher JFR which is likely due

to errors in node availability prediction. This lack in performance improvement can be due to the much higher

throughput exhibited in the MRS algorithm compared to both BF and REP. This allows the job queue to be

processed rather quickly before the resources exhibits failure. Therefore, this leads to the lack of improvement

from the original JFR and JRR values as it was already allocating the resources to the jobs in a near optimal

fashion.

In general, we �nd that under a DG environment, the inclusion of SAA, NAA or NSA into the selected

algorithms provides marginal performance improvement over the original. While a decrease in JFR is observed,

depending on the requirement of the GCE, one might feel that these marginal performance gain might not

justify the inclusion of a proactive strategy, especially the NAA or NSA strategies. However, in view of the

complexity of implementation, we suggest that strategies operating within DG environments to include SAA

which is both simple to implement and invokes negligible overheads due to the �ltering nature of its strategy.

This will allow the strategy to continue providing inherent advantages of the algorithm while maintaining the

ability to cope with changes in the GCE capacity. From the implementations compared, it was concluded that

the the modi�ed MRS provided the best balance in performance and prevention of job failures while utilizing

the SAA modi�cation.

7.3 Performance of the modi�ed algorithms in a EG environment

In an EG environment, it is noted that resources join or leave the GCE fairly often resulting in an overall

decrease in GCE capacity even though the resources participating can be large. In the normalized results, it

was observed that REP and 3D-MRS continues to provide improvements compared to BF, exhibiting noticeably

lower JFR. It was also noted that JRRs in REP strategies are much higher. This is due to the perceived capacity

of the GCE when considering the result of the GAE, causing the SAA strategy in REP to reject jobs that are

possibly over requesting resources from the environment. The NAA strategy when applied in REP resulted

in less JRRs due to the lack of pre-�lter of jobs, but exhibits a de�nitely higher JFR as jobs can fail due to

mis-predictions as well as changes in resource states.

These detriments, however, are not observed in 3D-MRS. 3D-MRS consistently exhibits higher JPR, lowered

JFRs and JRRs. In the cases where JFRs of the modi�ed MRS strategies exceeds that of REP, the JPRs of
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these algorithms always exhibits a much higher value. This signi�es that the strategy is able to adapt itself,

sacri�cing some jobs in view that the entire job queue can be processed faster.

There is however, an exception of the 3D-MRS strategy modi�ed with NAA that exhibited very poor JPR

values when the Run-Factor is at 0.1. This can be due to mistakes in resource state prediction due to the

volatility of the resources. However, it was found that in such cases, SAA modi�cations provides very good

results, where the jobs that are executed experienced either no failure, or a 50% improvement over the NAA

strategy. Similar improvements were also observed in the NSA strategies where there is also a slightly reduced

rejection rate of 0%-10% with the aid of node prediction occurring after �ltering from SAA. This is observed in

all Run-Factors for 3D-MRS.

In such EG environments, we therefore conclude that making use of 3D-MRS with the modi�cation of NSA

provided the most reasonable performance while reducing JFRs. This allows greater assurance of job completion

when executing in a volatile environment such as a EG.

7.4 Performance of the modi�ed algorithms in a HG environment

It is noted that in HG environments, the performance of the modi�ed BF, REP and 3D-MRS strategies falls

intermediate to the extremes represented by both DG and EG environments. It is noted that 3D-MRS with

NSA continues to provide the best balance in terms of JPR while exhibiting the lowest JFRs. At the same time,

JRR is kept to a minimum. Once again, this can be due to the fact that MRS as a strategy tries to optimize

the throughput of the jobs within the GCE. Indirectly, this results in a higher level of resources available for

processing. This thus allows for more jobs to enter the system before being �ltered as being classi�ed as unable

to run.

The continual improvements of the BF and REP strategies, once again, highlights the additive nature of

SAA and NAA. Observation of the simulation results clearly shows the advantage of introducing the SAA, NAA

or the NSA strategy under di�erent GCEs, workloads as well as algorithms. The continual advantage of NSA

also highlights that both the proposed SAA and NAA algorithms can be implemented, without detriments,

while continuing to maintain the best balance of performance and minimizing job failures in all cases.

8 Conclusions

In this paper, we have presented three forms of pro-active failure handling strategies, mainly (1) the Site

availability based allocation strategy (SAA-strategy), (2) the Node availability based allocation strategy (NAA-

strategy) and (3) the Node-Site availability based allocation strategy (NSA-strategy). We simulated three

di�erent types of GCEs in order to try to capture di�erent possible types of resource capacities in Grids. The

back�ll and replication algorithms were modi�ed and used to allow us to observe the advantages of the di�erent

pro-active strategies. 3D-MRS, which is an extension to the MRS strategy presented in [23, 24] is also presented

with integration to the various pro-active failure handling strategies. The results clearly shows the continued

advantage in utilizing the MRS model in resource allocation, and clearly demonstrates the ability of the MRS

strategy to be able to extend itself and cope with failure.
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Through our experiments, we were able to show that the inclusion of any type of pro-active handling

mechanism is able to cause a signi�cant improvement above conventional algorithms. Pro-active strategies also

have an additive e�ect, which is observed in the simulations involving the replication algorithm, where original

advantages of the strategy is preserved. This provides higher assurance to the availability of resource allocation

both pre and post runtime. Our simulations has also shown that including NSA strategies into various resource

allocation strategies is able to demonstrate improvements whereby job failures are signi�cantly reduced. The

superior performance of 3D-MRS with the failure handling strategies in the simulations also shows conclusive

evidence that the resource allocation strategy is able to handle failures e�ectively and optimally under various

operating environments, when compared to back�ll and replication algorithms.

It may be noted that failure prediction mechanisms for non-grid systems can also be used in our context if

the mechanism allows for multiple elements being considered in the prediction. Since it is possible that multiple

resources can be allocated to a single job, a low MTTF in any of the resources would mean that the probability

of the job requirements not being met would occur very soon, possibly before even the job completes. This

would also mean that the entire job would have failed. This is especially true in tightly coupled jobs, working

on loosely coupled systems. For instance, studies related to power-grid systems described in [25] can serve as

an allied technique. The work in [25] attempts to combine structural information with statistical analysis thus

proposing a predictive mechanism. Thus, as long as the non-grid based failure prediction mechanism is able

to handle the same scope as the above, it is entirely possible that such methods can also be used. Similarly it

has been argued in [26] that failure prediction mechanism is an e�ective solution to prevent HPC clusters from

data losses for maximizing MTBF. Our results also conclusively show that the inclusion of pro-active failure

handling strategies is able to reduce job failures during runtime. The ability to predict the resource states thus

paves way for higher assurance of a successful job execution when jobs are dispatched into a GCE.

Future work can de�nitely be done to discover the best passive methods that would work with pro-active

methods to further address failures that occur during runtime. The contributions in this paper therefore con-

clusively demonstrate that pro-active failure handling strategies can lead to better Grid scheduler performance

especially in a GCE experiencing any form of failure. The extension of the MRS allocation strategy also

continues to perform much better when compared to other common algorithms in the GCE.
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