
1

A Co-ordinate Based Resource Allocation Strategy for Grid Environments

Benjamin Khoo Boon Tat, Bharadwaj Veeravalli, Terence Hung and Simon See Chong Wee
National University of Singapore Department of Electrical and Computer Engineering,

Institute of High Performance Computing, Sun Microsystems
{g0402607, elebv}@nus.edu.sg, terence@ihpc.a-star.edu.sg, simon.see@sun.com

Abstract— In this paper, we propose a novel resource scheduling
strategy, referred to as the Multi-Resource Scheduling (MRS)
algorithm, which is capable of handling several resources to be
used among jobs that arrive at a Grid Computing Environment.
We propose a model in which the job and resource characteristics
are captured together and are used in the scheduling strategy. To do
so, we introduce the concept of virtual map and resource potential.
Based on the proposed model, simulations with realistic workload
traces were conducted to quantify the performance. We compare our
strategy with some of the commonly used algorithms, and show that
MRS renders a higher performance in all cases. Our experimental
results clearly show that MRS outperforms other strategies and we
highlight the impact and importance of our strategy.

I. INTRODUCTION

With recent technological advances in computing, the cost
of computing has greatly decreased, bringing powerful and
cheap computing power into the hands of more individuals
in the form of Commodity-Off-The-Shelf (COTS) desktops
and servers. Together with the increasing number of high
bandwidth networks provided at a lowered cost, the use
of these resources as a powerful computation platform has
increased. Recent distributed computing trends has moved
towards Grid Computing [1] were geographically distributed
systems are binded to work together, hoping to bring huge
amounts of computing resources together to solve problems
that where previously too costly to handle.

Consequently, what had used to be optimal in performance
for a local cluster has suddenly become a serious problem
when high latency networks, uneven resource distributions,
and low node reliability guarantees, are added into the system.
Scheduling strategies for these distributed systems are also
affected as more resources and requirements have to be
addressed in a Grid system. This leads to a lack of robust
scheduling algorithms that are available for Grids.

In this paper, we propose a novel scheme referred to as
Multiple Resource Scheduling (MRS) which is applicable
in a Grid Computing Environment (GCE). We consider the
various resource requirements of jobs and its inter-resource
dependencies while taking into consideration the computation
environment where the job resides in. The MRS technique
shall then devise an allocation schedule which can be used to
provide what it believes as the most efficient job execution
sequence to handle the jobs.

A. Related Work

In [3], queue completion time is reduced by executing each
job at more than one location. It then obtains the results

from the location where the job first completes. This method
provides redundancy in view of potential node failures, and
thus reduces the average job slowdown and turn-around times
as the fastest submission time is used. Better job wait times
and utilization if thus expected. However, the down side of
this strategy is the opportunity cost of the resources spent
in the duplicated jobs. In any event where a job execution
succeeds, this would have lead to wastage of resources of
degree n, where n is the number of times a job is replicated for
submission. A similar approached is used in [2], however, it is
felt that queue lengths are unnecessarily compromised. MRS
eliminates this wastage, by identifying and allocating only the
resources that are optimal for execution. This limits the amount
of resources used to the amount only required by the job, thus
allowing more jobs to be executed in an environment at any
given time.

In [4], Zhang’s proposal was to maintain a buddy set at each
site such that the best CPU resource will be allocated quickly
w.r.t the known entities within the set. However, the proposed
system only investigates computational capabilities on the
Grid. While Zhang’s method looks at being able to schedule
CPU intensive jobs in real-time, it does not address the other
dependencies such as data and bandwidth requirements of a
job. MRS takes the concept proposed and extends it to include
considerations of job dependencies to data, bandwidth and
locality. This allows MRS to be able to handle both local and
distributed jobs effectively.

In the work presented in [5], the ability to schedule a job in
accordance to multiple (K) resources is explored. Simulation
results in [5] clearly show performance improvements when
including resources-awareness in the scheduling algorithm.
Studies in [5] further highlight the limitations of current
approaches which can lead to unnecessary fragmentation of
job and under-utilization when resources are poorly allocated.
A resource balancing method was used to try to match the
multiple resources available to that of a job’s requirement. The
results show high system utilization and better performance.
However, [5] mainly considers resources within the same
locality and considers resources independently based on job
requirements. This causes inter-resource dependencies to be
hard to capture. MRS builds on the multi-resource concept
to create a strategy where dependencies can be capture and
and considered easily. This results in better inter-resource co-
operation and better resource and site allocation in the process.

In [6], Ranaganathan et. al. presented that Computation
Scheduling and Data Scheduling can be considered asyn-
chronously in Data-Intensive Applications, thereby separating
the resource considerations of computation and data. The



2

study considered External Schedulers, local Schedulers and
Data schedulers. It was concluded that data movement and
computation need not always be coupled together for consid-
eration. While this might be true, in some parameter sweep
applications, we argue that this is not always the case when
parallel applications, using libraries such as MPI or MPICH-
G2 [7], [8], are concerned. This is due to the fact that
distributed memory applications typically involve heavy data
transmissions during the execution of the application itself.
Decoupling the scheduling process into data and computation
scheduling therefore is not possible due to this high depen-
dence. There is also an assumption that little or no data is used
during the execution which might also not be true as chunks
of data can be picked up as events from other applications
during execution which can contribute to latencies during
execution. MRS resolves this by accounting for the inter-
dependence of resources prior to allocation, thereby optimizing
the performance of such applications.

Other works such as [13], [14] mainly concentrate specif-
ically on either the communication and data aspects or com-
putational requirements such as parameter sweep applications.
These techniques, although applicable to certain applications,
does not address instances where applications are subjected
to two or more resource restrictions. Our proposed solution
overcomes these limitations by determining a way of comput-
ing the desired type of resources through prudent aggregation
of selected units. Our simulation results indeed testify this
aggregation.

II. OUR CONTRIBUTIONS

In this paper, we shall introduce a Multiple Resource
Scheduling (MRS) strategy that would enable jobs with mul-
tiple requirements to be run effectively on a Grid Computing
Environment (GCE). The performance of such a scheduling al-
gorithm promises to provide respectable waiting times, queue
completion time, while achieving better utilization across the
entire GCE. This is due to the concurrent considerations of
many requirements. The proposed strategy is also independent
of the units used, as long as the entire GCE operates with the
same base units. The algorithm also offers no resistance in
accommodating considerations for more resources in its allo-
cation strategy. We evaluate the performance of our strategy
with respect to several key performance indicators to quantify
performance. Our study shows that MRS outperforms some of
the commonly available schemes in place for a GCE.

III. GRID SYSTEM MODEL

This section defines the Grid environment in which we will
consider designing MRS strategy. We first identify certain key
characteristics of resources as well as the nature of jobs in
place.

A GCE consists of many diverse machine types, disks,
and networks. In our resource environment, we consider the
following.

1) Computational resources can be made up of individual
servers, clusters or large multi-processor systems. Com-
munication to individual nodes in the cluster will be

done through a Local Resource Manager (LRM) such
as SGE, PBS, or LSF. We assume that the LRM will
reserve the required resource for a job when instructed
by the Grid Meta-Scheduler (GMS). It will then dispatch
the job to the reserved resource for execution. The GMS
thus treats all resources exposed under a single LRM as
a single aggregated resource. We find this assumption to
be reasonable as GMS usually does not have the ability
to directly contact resources controlled by the LRM and
can usually only submit to it.

2) The computation resources are of varying resource ca-
pabilities, and their resource capabilities and its changes
are known instantaneously throughout the GCE. While
it is not possible for this to happen reliably in reality,
it is possible to achieve information accuracy within
a limited time period. Without loss of generality we
assume that every node in the GCE is able to execute
all jobs when evaluating the performance of the MRS
strategy.

3) Each computation resource is connected to each other
through different bandwidths.

4) All resources have prior agreement to participate on the
Grid. From this, we safely assume that all resources are
accessible by every other participating node in the Grid.

5) Resources can include a number of shared CPUs,
amount of memory to be shared, and the quota of file
system space allocated for distributed computation. All
these information are shared with the same units across
the GCE.

6) We assume that the importance of the resources with
respect to each other is identical.

7) The capacity for computation in a resource is provided
in the form of GFlops. This is used as a gauge to stan-
dardize the performance of different CPU architectures
in different sites.

The creation of the job environment is done through the
investigation of the workload models available in the Parallel
Workload Archive Models [9] and the Grid workload model
available in [15]. The job characteristics are thus defined by the
set of parameters available in these models and complemented
with additional resource requirements that are not otherwise
available in these two models. In our job execution environ-
ment, we assume the following.

1) Resource requirement for a job does not change during
execution and are only of (a) Single CPU types, and (b)
massively parallel types written in either MPI or PVM.

2) The job estimates provided are the upper bound of the
resource usage of a given job.

3) Every job submitted can have its data-source located
anywhere within the GCE.

4) A job submitted can be scheduled for execution any-
where within the GCE.

5) Jobs resource requirements are divisible into any size
prior to execution.

6) In addition to computational requirements (i.e. GFlops,
RAM and File system requirements), every job also has
a data requirement where-by the main data source and



3

Fig. 1. Illustration of a physical network layout of a GCE.

Fig. 2. Resource view of physical environment with access considerations

size is stated.
7) The effective run time of a job is computed from the

time the job is submitted, till the end of its result file
stage-out procedure. This includes the time required for
the data to be staged in for execution and the time taken
for inter-process communication of parallel applications.

8) Resources are locked for a job execution once the
distribution of resources start and will be reclaimed after
use.

A physical illustration of the resource environment that we
consider is shown in figure (1) and the resource view of how
the Grid Meta-Scheduler will access all resources is shown in
the figure (2).

IV. SCHEDULING STRATEGY

The MRS strategy considers job requirements and resource
capabilities based on some performance metrics and compute
the best matching resource for a job to be dispatched to. This
identification of resource will enable the job (regardless of
the fact that if it is a parallel or serial application) to run
most efficiently. MRS will also try to avoid over allocation
of resources, so as to prevent the detrimental effects on other
jobs which might need these resources to achieve efficiency in
execution. By mapping a job to the best capable and matched
resource, we hope to be able to improve the following metrics
of performance measure.

1) Average Wait-Time (AWT)
2) Queue Completion Time (QCT)

3) Average Grid Utilization (AGU)
Our experiments consider two pairs of metrics for resource
allocation from the perspectives of resources and jobs. These
considerations include Resource Capabilities and Resource
Requirements for both computation as well as data.

We define Computation capabilities, to mean the capability
of a resource to carry out a computation job efficiently.
This capability is dependent on many things, including CPU
speed, the number of CPUs, the amount of RAM and network
latencies. We also define Data capabilities as a representation
of the capability of a resource to be able to handle data
efficiently. This can be a factor of available bandwidth and the
available file system. Computation and Data Requirements for
a job simply means the respective amount of computation or
data resources required in order for the job to be executed
successfully.

A. Resource Capabilities
We first characterize the resource environment defined as a

set S = {R1, ..., Rm}, where m represents the total number of
resources in our GCE. Each resource’s capability to perform
its computational role is identified to be dependent on effective
GFlops (C), memory available (M ) and file system (F ).

These three parameters are essential in identifying the basic
resources required for completing a job successfully when
allocated to resources for processing. This however does not
capture the overheads that might be incurred when a job
requires inter-process communication or when it is distributed
to multiple sites. An example of this is when a job makes
use of MPI-G2 to distribute its job to multiple resources in a
Grid. Such applications tend to run across multiple processors
or resources, exploiting multiple CPUs, distributed memory
architecture and distributed file systems. In order for such
applications to achieve the best performance, the resources
allocated to such an application must be able to satisfy the
job requirements while being well connected to a set of co-
operating resources.

In order to accommodate the requirements of such appli-
cations, we introduce a term called the Resource Potential
to be included as part of a resource’s computation capabil-
ities. The potential of a resource Ri refers to the level of
network connectivity between itself and its neighboring sites.
For simplicity, we assume that the network latencies as well
as the communication overhead of a resource is inversely
proportional to its bandwidth. We relate to Resource Potential
as a form of “Virtual Distance”, Pi of resource Ri, where
1 ≤ i ≤ m, is computed as Pi =

∑
Bij where, B is the

upload bandwidth, expressed in bits per sec, from Ri to Rj

for i 6= j and Bij = 0 if i = j. This effectively removes
all network complexities and “flattens” the bandwidth view
of all the resources to the maximum achievable bandwidth
between resources. We illustrate this “flattening” process in
figure (3). The values C, M , F and Pi dynamically change
with resource availability over time t. Thus we represent the
computational capability of a site i as a set Sc{Ri, t} and each
item is represented by fi{< C, M, F, Pi >, t}.

The data capabilities of a resource is mainly dependent on
its available upload bandwidth. This basically allows us to



4

Fig. 3. Flattened network view of resources for computation of Potential

quantitatively determine how quickly data can be transmitted
from one resources to the next. Available bandwidth also
changes over time depending if a resource is sharing any
of its network resources with other resources in the GCE.
This is also captured as a sequence of complete network
allocation for a job in our simulator. We annotate bandwidth
between two sites i and j as Bij = min{Bdownload

ij , Bupload
ji }

which changes over time t as data capabilities of a resource
Sd{Ri, t}. Where each item in this set is represented by
di{< B >, t} where B is defined above.

B. Job Resource Requirements

Like resource capabilities, jobs are also divided into compu-
tational as well as data resource requirements. These require-
ments are generally determined by the user (in our case, the
workload model determines the requirements).

The job environment is characterized by J = {Ai, ..., Aj}.
The computational requirement of each job Aj in the set of J
jobs is represented by gj{< C, M, F, Psrc >, t}. The C, M , F
parameters closely relate to the resource capabilities available
in the GCE. The only difference is that in the case of resource
requirements, these highlight the consumption of resources
rather than the availability. Psrc refers to the resource potential
of where the data source file of job Aj resides. This follows
from our assumption of the job execution environment in
point 3 highlighted in section III. The data requirement is
represented by ej{< F, Aruntime >, t}. Aruntime is the
estimated runtime of the job j.

C. Allocation Strategy

With both the capability and requirement models defined,
we now proceed to describe the allocation strategy used in
the GMS. The MRS strategy is based on a co-ordinate based
resource allocation scheme that aggregates various resources
into a 2-dimensional index i.e. a co-ordinate based system.
Sites participating in the Grid computes its own co-ordinate
space within this 2-dimensional plane when presented with
the job requirements. The resulting resource co-ordinates are

Fig. 4. A Virtual Map is created for each job to determine allocation

then sent back and plotted back at the GMS which decides
the order of nodes in which the job will be distributed to.

We call this resulting plot a Virtual Map. As the resources
available in the GCE changes whenever a new job is submitted
for execution, this Virtual Map must be re-created at each
scheduling instance. An illustration of the virtual map is shown
in figure (4). The euclidean distance from the origin denotes
the “goodness of fit” for the resource requirements of a job.

In figure (4), the computation and data index is computed
by equation (1) and (2) for each job in the queue. This is
done through a series of operations. We first broadcast gj and
ej to all resources in the GCE through a Grid Information
Service[16]. These resources then concurrently takes a snap-
shot of its available resources, and obtains fi and di. The
calculation of the computation and data index (xi, yi) is also
performed at this stage. These quantities are obtained by using
equation (1) and (2). The results are subsequently sent back
to the GMS which will automatically drop resources which
don’t reply within a time-out. The euclidean distance from the
origin is then obtained from the resulting map and the order of
resource distribution will be performed in an increasing order.
We note that each resource requirement computed within xi

can be scaled by K to signify the importance of a job resource.
The floor() function truncates all values to be at a minium
of 0.

xi =

√√√√ ∑
n=C,M,F

1
Kn

{
floor(0, (1− fi{n}

gj{n}
))

}2



5

+ 1
KP

{
floor(0, (1− fi{Pi}

gj{Psrc} ))
}2 (1)

yi =
ej{F}
di{B}

.
1

ej{Aruntime}
(2)

It should be noted that in this strategy, nodes evaluates
its ability to accept a job in parallel due to the broadcast
of the job requirements. This reflects well in a Grid, as
participating resources retain its autonomy in how they want to
share resources. thereby allowing them to alter the availability
of resources in situ. This broadcasting also means that unit
conversion can be carried out individually at the resource level
so that there is no need for GCE resources to maintain the
same base units, reinforcing the concept of distributed resource
control. Although this broadcast and result collection mecha-
nism can incur overheads in communication, it intrinsically
provides a sync-ack protocol before a job gets dispatched,
thereby reducing the need for very accurate Grid information
mechanisms. The nature of broadcast also favours the MRS
strategy in an environment where real-time scheduling is
required as batching of jobs is not needed to create a run
schedule.

From both equations (1) and (2), we note that (xi, yi) is
dimensionless and xi is a collective measure of how well
a site is able to provide the individual resources required to
execute a job. Sites that are able to provide more than available
resources also do not suffer any penalty in selection. We also
account, within the measure, for a way to ensure that the
connectivity of the site is high. This is done by using a ratio
of the Resource Potential as shown in the equation. This is
such that in event of any job distribution, network latency
will not become a significant overhead due to inappropriate
resource allocation. We wish to draw the attention that at
this point of co-ordinate computation, the resource is still
unaware if any job distribution will happen. The yi co-ordinate
essentially computes the ratio of data transmission time to
the runtime. This gives weight-age to the fact that if the job
could possibly be processed more efficiently if it doesn’t incur
transmission overheads, it would prefer to execute locally.
This therefore easily captures the resource dependencies of
data and bandwidth, and illustrates how additional resource
inter-dependencies can be addressed. We also note that in the
calculation of the yi co-ordinate, the di{B} used to compute
yi for each resource would be the bandwidth required for each
resource to obtain the data.

These independent considerations are then plotted on a
Virtual Map, and brought together through the computation
of euclidean distance from the origin. The result will then be
the scheduling score of the site, where lower is better.

Figure (4) shows how two different jobs with different
requirements1 and run time would affect how the resulting
plots on the Virtual Map. It is clear to see that as the ratio of
the transmit time to run time of a job decreases, the strategy
find it increasingly better to dispatch a job to a remote location

1Figure (4) is illustrated with a data source location of node D from the
preceeding figures.

for execution, while keeping in consideration the ability to best
allocate its resources for minimal job distribution if possible.

D. System Implementation and Complexity

The system and strategy for MRS described in (IV-C) can
be described as a class of Job Sharing strategies operating
within a Multi-Site Computing model [18]. However, when
MRS is compared to the models described in [18], clear
stages in resource selection and scheduling algorithm does not
exist. The computation of the indexes combines the selection
and scheduling stages and thus reduces the fragmentation
of resource considerations during resource allocation and
scheduling.

In a strategy where resource matching is followed by
allocation through a scheduling algorithm, where there are
n computing sites in the GCE and m resources to consider,
the time complexity of the resource selection stage would be
O(nm). This results in undesirable slow-downs when there are
either a huge number of sites, or when there is a large number
of resources to consider. The total time is therefore the sum
of time-to-allocated and the time-to-schedule.

In MRS, the longest waiting job will always broadcast its
resource requirements first. This gives the strategy the nature
where the wait time for each job will tend to be reduced. This
broadcast of requirements is of time complexity O(n) as each
site will only need to receive the resource requirements of a
job once. This is delivered in a single transmission. However,
due to broadcast, network latencies will be involved, which
can lead to potential slow-downs in MRS. This can be easily
prevented by “dropping” sites that does not acknowledge the
broadcast in a fixed amount of time. We, thus set an upper
limit of the Time-To-Live (TTL) for each broadcast depending
on the network environment MRS is operating in. The worst-
case overall time taken for MRS to schedule can thus be
written as 2n.TTL + max(CTn), where max(CTn) is the
maximum time taken for index computation for a single site.
The time-complexity therefore remains linear with increase in
sites as well as resources when using MRS. It is noted that
the time complexity affects the accuracy of the information
within a given time window. This is because a higher ordered
time complex algorithm will penalize the accuracy of the
information at the point of job dispatch. The linear time
complexity in MRS ensures that the information used in the
strategy will never be more out-dated than a strategy that
incurs a time complexity of O(nm), especially when there
is a large number of resources to consider.

We also investigated the computational complexity of MRS
compared to other Job Sharing strategies in a Multi-Site
Computing Model. When a strategy separates the resource
selection and the scheduling phases, two main components
makes up the computational complexity of the strategy for
each job. First, being the sorting and filtering methodology
used in the resource selection phase, and secondly, the schedul-
ing complexity incurred in the algorithm used. In MRS, the
creation of the Virtual Map for each job is essentially a sort
of the (x, y) indexes provided by the sites participating in the
MRS. This is simplified further when we use the euclidean



6

distance as a measure of match. The computational complexity
is therefore only dependent on the sorting algorithm. This
is because scheduling in MRS is a one step process. It is
also noted that the computation complexity of the indexes
provided by the participating sites is linear to the number of
resources and axes we which to consider in the Virtual Map.
The increase in the number of sites or resources therefore
has no effect on the overall allocation strategy provided in
MRS, and thus limits the computation complexity to that of
the sorting algorithm used in the system. This is unlike other
strategies which can still incur computation complexities in the
other stages of allocation. In our implementation, the sorting
strategy used is a stable merge-sort where the complexity is
O(nlogn).

It should be noted that in MRS, resource considerations
are not limited to dependencies. Additional requirements or
dependencies can be easily added by extending the number
of dimensions to be considered within MRS. This does not
severely impact the complexity of MRS in both time and
computation complexity when compared to other methods.

The broadcast of resource requirements in the GCE is done
“all to all” due to the nature of Job Sharing. This is potentially
wasteful when jobs has to be rescheduled due to the lack of
resources or delayed for some reason. We reduce the impact
of broadcasting by allowing sites in the GCE to cache all
requirements of unscheduled jobs upon reception of a broad-
cast. Subsequent notifications to try to schedule the same jobs
will therefore incur much less overheads in communication. A
SYNC-ACK communications protocol between the target site
and the GMS was also used ensure that the site is reserved
for the job dispatch. This component also allows for better
synchronization between multiple GMSes if more than one is
used. A cancellation broadcast was also introduced to notify
all participating sites in the GCE to remove a unscheduled
job from its cache. This keeps the entire GCE in sync of the
jobs that are remaining to be scheduled. Potentially, multicast
mechanisms could also be used to help reduce the overheads
of broadcasting.

V. PERFORMANCE ANALYSIS AND DISCUSSIONS

In order to ascertain the performance of MRS, we compared
it against the Backfilling strategy (BACKFILL) [11] and a job
Replication (REP) strategy [3], which is similar to that used
in SETI@Home [17]. We make use of similar Job Sharing
and Multi-site environment as described earlier such that the
intrinsic advantages of the algorithms can be observed.

The Lublin99 [10] workload model from [9] as well as
workload models provided by[15] was used as the workload
input. This provided workload profiles from San Diego Super-
Computing Center (SDSC), Lawrence Livermore National
Laboratory (LLNL) and The Royal Institute of Technology
(KTH). An event driven simulator using a generated set of
workload with 200 jobs running over 20 sites was imple-
mented. This is to ensure that there will be a large number
of jobs in the queue, such that the effects of the scheduling
algorithm will be significant. The metrics described in section
IV was used to quantify the performance and comparison. The

AWT (Time units) QCT (Time units) AGU (%)
BACKFILL 2579.43 187302.22 57.78

REP 1500.40 320362.16 63.08
MRS 1266.71 152810.98 74.46

Tabulated Experimental Result

AWT (%) QCT (%) AGU (%)
REP 41.83 (71.04) 9.16
MRS 50.89 18.41 28.86

Percentage Improvement over BACKFILL

AWT (%) QCT (%) AGU (%)
BACKFILL (71.91) 41.53 (8.40)

MRS 15.58 52.30 18.04

Percentage Improvement over REP

TABLE I
EXPERIMENTAL RESULTS COMPARING BACKFILL, REP AND MRS

Fig. 5. Normalized comparison of simulation to Backfill Algorithm

results of our experiments are summarized in Table (I) and
figure (5), and discussed in the section below.

In the simulation model, jobs are allowed to arrive in a
stream over a span of 3 days. The various job requirements
are modelled by the information provided in [10], [15] and
are injected into the simulation model. Data requirements are
also additionally generated in order to simulate the need for
data to be transported from one location to another in order
for a successful computation to take place.

Average Wait Time (AWT) is the average amount of time
a job waits in the queue before being executed. This starts
from the point of submission to the point when the job begins
its transmission to the execution node. In figure 5, we have
normalised all the performance indicators to the BACKFILL
algorithm in order to look at the performance differences of
the experiments.

It was noted that in terms of AWT, both REP and MRS
greatly out-performs BACKFILL by 40% and 50%, when
ran in a distributed environment, respectively. This is due to
the fact that the backfill algorithm does not allocate jobs in
consideration of the data distribution time. The fact that jobs
are streaming into the system also accounts for the inability for
the algorithm to be able to obtain a good “packing” schedule



7

where resources will be optimized.
From Table I, we can clearly see that the utilization for

BACKFILL is the lowest of the experiments. Average Grid
Utilization (AGU) is measured as the average percentage of
nodes in use throughout the execution time of the entire queue.
REP and MRS both have increasing levels of utilization, which
also accounts for the much shorter AWT. However, we note
that the reason for REP achieving a shorter wait time is due
to the nature of job replication. As a job gets replicated, the
likelihood of being allocated a faster resource or bandwidth
increases. As the first completed replicated job will result in
the termination of the similar jobs, the wait time for other jobs
will subsequently decrease as more jobs are injected into the
system.

Although this has a positive effect on AWT, the effect
of replication has produced a negative effect on the Queue
Completion Time (QCT). We measure QCT as the time taken
for the first job to enter the system up until the time the last job
leaves the system. The degradation of performance is clearly
reflected in figure 5, where REP is performing 71% slower in
QCT. It is noted that the time taken for a job to complete its
execution is inclusive of the execution overheads and latencies
that is associated with data and computation communications.

In contrast to BACKFILL and REP, our simulations has
shown that MRS has been able to achieve a 50% improvement
AWT, an 18% improvement over QCT and a 29% improve-
ment in AGU. This is due to the fact that MRS makes use of
comparative measures on the benefits of allocation to each
node. This is inherent to the algorithm during the process
of Virtual Map creation. A lowered AWT if very much due
to a good allocation decision of the resources when MRS is
presented with a queue of jobs. This allows for more jobs to
be allocated per unit time, which is reflected clearly in the
18% improvement in QCT over BACKFILL. This is achieved
without the over allocation of resources as in REP, giving
MRS a 52.3% improvement when compared to a REP. The
matching of resources using the computation and data indexes,
also resulted in a much higher utilization, dispatching jobs
to nodes that are able to satisfy the jobs while intelligently
deciding which jobs to keep local and which jobs to dispatch.

In general, it is observed that MRS is able to render a
performance that is much suited for scheduling resources over
the Grid.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have proposed a novel resource scheduling
algorithm capable of handling several resources to be catered
among jobs that arrive at a Gird system. Our proposed
algorithm, referred to as Multi-Resource Scheduling (MRS)
algorithm, takes into account the different resource require-
ments of different tasks and shows how to obtain a minimal
execution schedule through efficient management of available
Grid resources. We have introduced the concept of virtual map
that can be used by the scheduler to determine a best fit of
resources for jobs prior to actual execution. We also introduced
the concept of Resource Potential to identify a node that has
least execution overheads for a job to execute.

The effectiveness of the MRS technique is studied against
workloads based on SDSC, LLNL and KTH and our ex-
periments have conclusively elicited several key performance
features of MRS with respect to BACKFILL and REP. Possible
extensions to MRS includes Quality-of-Service, economic
considerations, achievable through the increase of dimensions
in the MRS algorithm. This allows MRS to include other
concepts for optimal scheduling in light of different resources
and cost mechanisms considerations in Grid computing.

REFERENCES

[1] I. Foster and C.Kesselman, The Grid: Blueprint for a new Computing
Infrastructure (2nd Edition), Morgan-Kaufman, 2004

[2] V. Subramani, R. Kettimuthu, S. Srinivasan, and P. Sadayappan, "Dis-
tributed Job Scheduling on Computational Grids Using Multiple Si-
multaneous Requests", In the Proceedings of 11th IEEE International
Symposium on High Performance Distributed Computing HPDC-11
20002 (HPDC’02), Edinburgh, Scotland, July 24-26, 359-368, 2002.

[3] Y. Li and M. Mascagni, “Improving Performance via Computational
Replication on a Large-Scale Computational Grid”, In the Proceedings
of IEEE/ACM International Symposium on Cluster Computing and the
Grid (IEEE/ACM CCGRID2003), Tokyo, 2003.

[4] L. Zhang, "Scheduling algorithm for Real-Time Applications in Grid
Environment", In the Proceedings on IEEE International Conference on
Systems, Man and Cybernetics, USA, Vol. 5, 2002.

[5] W. Leinberger, G. Karypis, and V. Kumar, "Job Scheduling in the
presence of Multiple Resource Requirements", In the Proceedings of
the IEEE/ACM SC99 Conference, Portland, Oregon, USA, Nov 13-18,
pp. 47-48, 1999.

[6] K. Ranganathan and I.Foster, "Decoupling Computation and Data
Scheduling in distributed Data-Intensive Applications", In the Pro-
ceedings of 11th IEEE International Symposium on High Performance
Distributed Computing HPDC-11 (HPDC’02), Edinburgh, Scotland,
July 24-26, 352-358, 2002.

[7] N. Karonis, B. Toonen, and I. Foster, "MPICH-G2: A Grid-Enabled
Implementation of the Message Passing Interface", Journal of Parallel
and Distributed Computing (JPDC), Vol. 63, No. 5, 551-563, May 2003.

[8] K.-L.Park, H.-J. Lee, O.-Y. Kwon, S.-Y. Park, H.-W. Park and S.-D. Kim,
"Design and Implementation of a dynamic communication MPI library
for the grid", International Journal of Computers and Applications,
ACTA Press, Vol 26, No. 3, pages 165-171, 2004.

[9] Parallel Workload Archive: Models,
http://www.cs.huji.ac.il/labs/parallel/workload/models.html

[10] U. Lublin and D. G. Feitelson, "The Workload on Parallel Supercom-
puters: Modeling the Characteristics of Rigid Jobs." Technical Report
2001-12, School of Computer Science and Engineering, The Hebrew
University of Jerusalem, Oct 2001.

[11] V. Hamscher, and U. Schwiegelshohn, and A. Streit, "Evaluation of
Job-Scheduling Strategies for Grid Computing", In the Proceedings of
1st The 1st IEEE/ACM International Workshop on Grid Computing,
Brisbane Australia, 2000.

[12] D. A Lifka, "The ANL/IBM SP Scheduling System", In the Proceedings
of the Workshop on Job Scheduling Strategies for Parallel Processing,
Springer-Verlag, London, UK, Pages: 295 - 303, 1995.

[13] H. Casanova, A.legrand, D. Zagorodnov, “Heuristics for Scheduling Pa-
rameter Sweep Applications in Grid Environments,” 9th Heterogeneous
Computing workshop 2000

[14] K. Taura, A. Chien, , “A Heuristic Algorithm for Mapping Communicat-
ing Tasks on Heterogeneous Resources,” 9th Heterogeneous Computing
workshop 2000

[15] B. Song, C. Ernemann and R. Yahyapour, “User Group-based Workload
analysis and Modelling,” Cluster and Computing Grid Workshop 2005,
Cardiff United kingdom, 2005

[16] T. Zang, W. Jie, T. hung, Z. Lei, S. J. Turner, W. Cai, “The Design and
Implementation of an OGSA-based Grid Information Service”, IEEE
International Conference on Web Services (ICWS’04), page 556, 2004

[17] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Lebofsky,
“SETI@home-Massively distributed computing for SETI,” Computing
in Science and Engineering, v3n1, 81, 2001.

[18] C. Ernemann, V. Hamscher, U. Schwiegelshohn, R. Yahyapour, “On Ad-
vantages of Grid Computing for Parallel Job Scheduling,” Proceedings
of the 2nd IEEE/ACM International Symposium on Cluster Computing
and the Grid, 2002.


