
Multi-Dimensional Resource Allocation Strategy

for Large-Scale Computational Grid Systems

Benjamin Khoo Boon Tat

(B. Eng (Hons), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2006

1

Abstract

In this thesis, we propose a novel distributed resource-scheduling algorithm

capable of handling multiple resource requirements for jobs that arrive in a

Grid Computing Environment. In our proposed algorithm, referred to as Multi-

Dimension Resource Scheduling (MRS) algorithm, we take into account both

the site capabilities and the resource requirements of jobs. The main objective

of the algorithm is to obtain a minimal execution schedule through efficient

management of available Grid resources. We first propose a model in which the

job and site resource characteristics can be captured together and used in the

scheduling algorithm. To do so, we introduce the concept of a n-dimensional

virtual map and resource potential. Based on the proposed model, we conduct

rigorous simulation experiments with real-life workload traces reported in the

literature to quantify the performance. We compare our strategy with most

of the commonly used algorithms in place on performance metrics such as,

job wait times, queue completion times, and average resource utilization. Our

combined consideration of job and resource characteristics is shown to render

high-performance with respect to above-mentioned metrics in the environment.

Our study also reveals the fact that MRS scheme has a capability to adapt

to both serial and parallel job requirements, especially when job fragmentation

occurs. Our experimental results clearly show that MRS outperforms other

strategies and we highlight the impact and importance of our strategy.

We further investigate the capability of this algorithm to handle failures

through dimension expansion. Three types of pro-active failure handling strate-

gies for grid environments are proposed. These strategies estimates the availabil-

ity of resources in the Grid, and also preemptively calculate the expected long

term capacity of the Grid. Using these strategies, we create modified versions

of the backfill and replication algorithms to include all three pro- active strate-

gies to ascertain each of its effectiveness in the prevention of job failures during

execution. A variation of MRS called 3D-MRS is presented. The extended algo-

2

rithm continues shows continual improvement when operating under the same

execution environment. In our experiments, we compare these enhanced algo-

rithms to their original forms, and show that pro-active failure handling is able

to, in some cases, achieve a 0% job failure rate during execution. Also, we show

that a combination of node based prediction and site capacity filter used with

MRS provides the best balance of enhanced throughput and job failures during

execution in the algorithms we have considered.

Keywords: Grid computing, scheduling, parallel processing time, multiple re-

sources, load distribution, failure, fault tolerance, dynamic grids, failure han-

dling

3

Acknowledgments

I would like to express gratitude for my supervisor Bharadwaj Veeravalli for

his guidance, advice and support throughout the course of this work. The

assistance and lively discussions with him has provided much of the motivation

and inspiration during the course of research. This thesis would not have been

possible without his guidance, ideas and contributions.

I would also like to express my appreciation for my ex-colleagues from Inter-

national Business Machines (IBM), IBM e-Technology Center (e-TC) and the

Institute of High Performance Computing (IHPC). Without the opportunities

from IBM and working with e-TC (John Adams and team), the ideas rooted

for this thesis would never have materialized. The involvement in commercial

Grid Computing projects with IBM also proved to be a great background to

the understanding of real problems faced in the commercial sector. Also a big

thank-you to Chia Weng Wai (IBM) for taking the time to explain the perspec-

tive of failure in the eyes of the commercial customers.

Many thanks also goes to good friend and colleague, Ganesan Subramanium

(IHPC), for our many tea-breaks to discuss ideas that could be used in this

research. While some of them might not have worked out, the ideas they rep-

resented certainly worked towards to goal of this research. Thanks also goes to

Terence Hung (IHPC) for being an understanding manager, and allowing me to

combine my work responsibilities and research interest during my stay in IHPC.

His guidance and candid comments has also helped refine this work.

Special thanks also goes to Simon See Chong Wee (SUN Micro-systems) for

encouraging me to put my initial ideas unto paper which became the basis of

this thesis. His initial guidance and perspective in this work was encouraging

and invaluable to its outcome.

What i have done during the pursuit of this degree would not have been

possible without the support of my family, Veronica Lim. I cannot begin to

express the gratitude for her on the sacrifices she made in order for me to

4

pursue this degree and finally put my ideas unto paper.

I would also like to acknowledge National University of Singapore for giving

me the opportunity to pursue this degree with my ideas. Last but not least, i

would like to thank anyone i have failed to mention that have made this work

possible.

5

Contents

1 Introduction 10

1.1 Related Works . 11

1.2 Our Contributions . 16

1.3 Organization of Thesis . 17

2 Grid Computing Model 19

2.1 Resource Environment for Grid Computing 19

2.2 Failure Model for Grid Computing 21

2.3 Performance measures . 25

3 Allocation strategy and Algorithms 28

3.1 Multi-dimension scheduling . 28

3.1.1 Computation Dimension 29

3.1.2 Computational Index through Aggregation 31

3.1.3 Data Dimension and indexing through resource inter-relation 32

3.1.4 Dimension Merging . 33

3.2 Formulation for Failure Prediction 34

3.2.1 Pro-active Failure Handling versus Passive Failure Handling 35

3.2.2 Mathematical Modeling 36

3.2.3 Comparing Replication and Prediction 41

3.3 Improving Resilience of Algorithms 46

3.3.1 Pro-active failure handling strategies 46

3.3.2 Modifications to Algorithms 47

4 Performance Evaluation 50

4.1 Simulation Design . 50

4.2 MRS Results, Analysis and Discussions 56

4.3 Pro-active Failure Handling Results, Analysis and Discussions . . 60

4.3.1 Performance of the unmodified algorithms 60

6

4.3.2 Performance of the modified algorithms in a DG environ-

ment . 64

4.3.3 Performance of the modified algorithms in a EG environ-

ment . 65

4.3.4 Performance of the modified algorithms in a HG environ-

ment . 67

5 Conclusion 68

6 Future works 70

7

List of Figures

1 Illustration of a physical network layout of a GCE. 22

2 Resource view of physical environment with access considerations 22

3 Resource Life Cycle Model for resources in the GCE 24

4 Flattened network view of resources for computation of Potential 30

5 A Virtual Map is created for each job to determine allocation . . 34

6 Passive and Pro-active mechanisms used to handle failure 35

7 Probability of success versus α under varying replication factors K 42

8 Probability of success Pr versus Er under varying division factors k 44

9 Probability of success Pr versus Er under varying R with division

factor k = 4 . 45

10 Workload model profile provided by [25] 57

11 Normalized comparison of simulation to Backfill Algorithm . . . 57

12 Simulation results for DG under different Run-Factors 61

13 Simulation results for EG under different Run-Factors 62

14 Simulation results for HG under different Run-Factors 63

8

List of Tables

1 Table of Simulated Environments 54

2 Experimental results comparing BACKFILL, REP and MRS . . 58

9

1 Introduction

With recent technological advances in computing, the cost of computing has

greatly decreased, bringing powerful and cheap computing power into the hands

of more individuals in the form of Commodity-Off-The-Shelf (COTS) desktops

and servers. Together with the increasing number of high bandwidth networks

provided at a lowered cost, use of these distributed resources as a powerful com-

putation platform has increased. Vendors such as IBM [1, 2], HP [3] and Sun

Micro-systems [4] have all introduced clusters that would effectively lower the

cost-per-gigaflop of processing while maintaining high performance using locally

distributed systems. The concept of Grid Computing [5] has further pushed the

envelope of distributed computing, moving traditionally local resources such as

memory, disk and CPUs to a wide area distributed computing platform sharing

these very same resources. Consequently, what had used to be optimal in per-

formance for a local cluster has suddenly become a serious problem when high

latency networks, uneven resource distributions, and low node reliability guar-

antees, are added into the system. Scheduling strategies for these distributed

systems are also affected as more resources and requirements have to be ad-

dressed in a Grid system. The lack of centralized control in Grids has also

resulted in failure of traditional scheduling algorithms where different policies

might hinder the sharing of specific resources. This leads to a lack of robust

scheduling algorithms that are available for Grids.

At the same time, as more people become aware of Grids, the types of com-

putational environment has also changed. On one hand, large scale collaborative

Grids continue to grow, allowing both intra and inter organizations to access

vast amount of computing power, on the other, increasing number of individuals

are starting to take part in voluntary computations, involved in projects such

as Seti@Home or Folding@Home. Commercial organizations are also beginning

to take notice of the potential capacities available within their organization if

the workstations are aggregated into their computing resource pool.

10

These increase in awareness, has lead to various products, both in research

and commercial, that handles resource allocation and scheduling of jobs to har-

ness these computation powers. Products such as Platform LSF [34] or the

Sun Grid Engine [35] provides algorithms and strategies that handles Dedicated

Grid Computing Environments (GCE) well, but is unable to work optimally in

Desktop Grid environments due to the high rate of resource failures. The same

applies for technologies such as United Devices [36] or XGrid [37], whereby al-

though it excels in Desktop Grid (EG) environments, is unable to provide the

same level of performance in Dedicated Grid (DG) environments. This is due

to the assumptions made on the possibly high failure rates, resulting in simple

scheduling algorithms used in such systems.

Given the ability to preemptively know about failures and the handle it ade-

quately would allow the rise of a new class of scheduling algorithms that is able

to prevent job failures resulting from the failure in the execution environment.

Coupling this with the fact that handling job failures can help to reduce the

turn-around time for a successful job completion, it would be then possible to

create large scale scheduling algorithms where it is able to know, estimate and

allocate jobs to resources that can fulfill its task with minimal interruptions

and re-scheduling. Together with a well designed multiple resource scheduling

mechanism, it will ultimately result in higher throughput, and a higher level

of quality for jobs submitted to Grids. This motivates to invent new strategies

that take into account the failure possibilities to render best services.

1.1 Related Works

There have been other strategies introduced to handle resource optimization for

jobs submitted over Grids. However, while some investigated strategies to obtain

optimizations in the computational time domain, others looked at optimizations

in data or I/O domain. Recently, more creative methods to achieve optimal

scheduling have included the concept of the costs of resources in financial terms.

Some of these techniques, which are relevant to the context of this paper, will

11

be introduced below.

In [6], job optimization is handled by redundantly allocating jobs to mul-

tiple sites instead of sending it only to the least loaded site. The rationale in

this scheme was that the fastest queue will allow a job to execute before its

replicas and this provides low wait times and improves turn-around time. Job

allocation failures due site availabilities would also be better handled due to

this redundancy. However, this strategy leads to problems where queue lengths

of different sites are unnecessarily loaded handle the same job. The frequent

changes in queue length can also potentially hamper on-site scheduling algo-

rithms to work effectively as schedules are typically built by looking ahead in

the queue. In addition, the method proposed does not investigate the problems

that can arise when the data required for the job is not available at the execu-

tion site and needs to be transported for a successful execution. MRS works to

eliminate these issues by allocating only the right amount of resources to jobs

that requires it, thus freeing up queues from potentially non-executing jobs.

In [7], Zhang has highlighted that the execution profiles of many applications

are only known in real-time, which makes it difficult for an “acceptance test”

to be carried out. The study also broke down the various scheduling models

into 1) Centralized, wherein all jobs are submitted at a central location for

scheduling and dispatching, 2) Decentralized, wherein jobs are submitted at

their local locations for dispatching, and 3) Hierarchical model, wherein jobs

are submitted to a meta-scheduler but are dispatched to low-level schedulers

for dispatching and execution. Effective virtualization of resources was also

proposed in order to abstract the resource environment and hide the physical

boundaries defined. A buddy set as in [8] was also proposed, and its effectiveness

also highlighted in [18], where it was shown that when groups of trusted nodes

co-operate, the resulting performance is superior compared to situations where

there is no relationship establishment between nodes. However, in both cases,

the strategies proposed looks plainly at the computational requirements of a

job and does not consider the data resource required. It also does not address

12

resource allocation pertaining to both serial and parallel job requirements. MRS

effectively applies the concept of co-operation and virtualization to exploit the

advantages presented in [18, 8], but includes knowledge of bandwidth to account

for I/O and communication overheads. While this allows us to apply MRS to

both serial and parallel jobs, it also allows us to efficiently schedule in a Grid

environment where the data resources are distributed.

In the work presented in [9], the ability to schedule a job in accordance to

multiple (K) resources is explored. Although the approach was not designed

with the Grid environment in mind, the simulation work presented in [9] shows

clearly the potential benefits where scheduling with multiple resources is con-

cerned. Performance gains of up to 50% were achieved when including effective

resources-awareness in the scheduling algorithm. Similar resource awareness

and multi-objective based optimizations where studied in [21]. In both cases,

the limitations of in conventional methods was also identified as there was have

no mechanism for utilizing additional information known about the system and

its environment. However, in [9], there was no data resources identified, while in

[21], we believe that the over simplicity of resource aggregation was in-adequate

in capturing resource relationships. MRS proposes a more complex form of re-

source aggregation that allows for better expression of resource relationships,

while maintaining simplicity in the algorithm construction. At the same time

we continue to consider multiple resources which includes both computational

and data requirements.

In [10] data replication and reuse of resources was looked into as a means of

establishing a Grid being able to handle large data (i.e., Data Grid). Elizeu et.

al. has looked into the classification of tasks that are processors of huge data

(pHD), where by processes require large datasets and data reuse is possible.

They introduced a term referred to as Storage Affinity, which takes into account

on how reusable is a set of data by pHDs or a bag of tasks. This also determines

if a task should be sent to a location where the required data resides or vice

versa. Following this, task replication [44] is used to reduce the wait time of

13

the job. This method is useful to handle pre-replicated or re-usable data but

does not address how the data would be best scheduled for applications with

no reusable data. However, [10] has demonstrated that it is possible to improve

response times for jobs through smart data management. We build on this

concept of Affinity in our algorithm, combined with better resource relationship

representation, to arrive at a strategy that would allow the overall overheads of

data transmission to be minimized. This is done with no detrimental effect on

the wait times of a job and the overall queue completion of the Grid environment.

Contributions in [11] considered the idea of replication and further included

a data catalog method to discover and the best location to use. Making use

of the Network Weather Service [12], it is possible to determine the best node

to collect the data from/send a job to. Then, a compute-data pair is assigned

with the earliest completion time. This method has again identified that data

optimization is critical to the response time of a job. This however, does not

exploit resource locality w.r.t the serial or parallel job requirements. This is

thus unsuitable for jobs that are highly parallel in nature (i.e., for applications

customized for distributed memory systems). We look upon parallel jobs as

applications that requirements low latency and high bandwidth, and assign the

resource allocation such that both parallel and serial jobs are optimized.

In [13], Ranaganathan et. al. presented that Computation Scheduling and

Data Scheduling can be considered asynchronously in Data-Intensive Applica-

tions. The study considered External Schedulers, local Schedulers and Data

schedulers. It concludes that data movement and computation need not always

be coupled for consideration together. While this might be true, and demon-

strated in [11], through High Energy Physics applications, this is not always the

case when MPICH-G2 type applications [14, 17] are concerned. MRS recognizes

parallel job requirements and, by using affinity and combined resource alloca-

tion, decides the best sites for the job to be dispatched to such that everything

is in the same path.

Other projects such as the Storage Resource Broker [15] and OGSA-DAI

14

[23] mainly concentrates on assisting the access and integration of data in a

distributed computing environment such as a Grid. By itself, these middle-ware

does not decide nor allocate the availability of data resources.

While many other works such as [19, 20] continues to provide algorithms to

effectively allocate resources, much of these works on the premise of [13] where

data and computation resource requirements are handled separately. While

these mechanisms are shown to be effective in Monte-Carlo or parameter sweep

type applications where the tasks or sub tasks are considered to be independent,

we hesitate to generalize on its effectiveness when the nature of jobs, such as

MPI-G2 parallel class of applications, can lead to inter-resource dependence.

Although many of these algorithms work effectively over a known set of re-

sources, the complexity of the strategies makes it difficult to include additional

resources to the Grid. MRS seeks to eliminate this limitation to allow additional

resource considerations to be easily added for consideration through aggregation

and representation of resource dependence. Our simulation demonstrates this

aggregation to cater for data and communication overheads while at the same

time, taking care of both requirements of serial and MPI parallel application,

especially during fragmentation.

While the above literature provides many existing perspectives of resource

allocation and scheduling, there has been no proposal on the resource model

suitable for Grids and the underlying mechanism to prevent failures of jobs in

Grids. We classify the current available work on Grid failures into pro-active

and post-active mechanisms. By pro-active mechanisms, we mean algorithms

or heuristics where the failure consideration for the Grid is made before the

scheduling of a job, and dispatched with hopes that the job does not fail. Post-

active mechanisms identifies algorithms that handles the job failures after it has

occurred. In the literature, very few works address failure on Grids. Of those

that look into these issues, many works are primarily post-active in nature and

deal with failures through Grid monitoring as mentioned in [38]. These methods

mainly do so by either checkpoint-resume or terminate-restart [41, 39]. Two

15

pro-active failure mechanisms is introduced in [40, 44] and [42]. While [40, 44]

operates by replicating jobs on Grid resources, [42] only looks at volunteer Grids.

The former can possibly lead to an over allocation of resources, which will be

reflected as an opportunity cost on other jobs in the execution queue. While the

latter only addresses independent task executing on the resources. It does not

address how these resources can potentially co-operate to run massively parallel

applications.

1.2 Our Contributions

In order to provide a more robust allocation strategy, we propose a novel

methodology referred to as Multi-Dimension Resource Scheduling (MRS) strat-

egy that would enable jobs with multiple resource requirements to be run effec-

tively on a Grid Computing Environment (GCE). A job’s resource dependen-

cies in computational, data requirements and communication overheads will be

considered. A parameter called Resource Potential is also introduced to ease

in situations where in inter-resource communication relations need to be ad-

dressed. An n-dimensional resource aggregation and allocation mechanism is

also proposed. The resource aggregation index and the Resource Potential suf-

ficiently allows us to mathematically describe the relationship of resources that

affects general job executions in a specific dimension into a single index. Each

dimension is then put together to form an n-dimensional map that allows us to

identify the best allocation of resources for the job. The number of dimensions

considered depends on the number of job related attributes we wish to schedule

for.

The combination of these two methodologies allows MRS to be able to re-

spond more suitably in the execution of applications that are both highly parallel

as well as serial in nature in GCEs. The performance of such a scheduling algo-

rithm promises respectable waiting times, response times, as well as an improved

level of utilization across the entire GCE.

As dimensional indices are computed at the resource sites itself, this vastly

16

improves the distributed control of the Grid over resources. It additionally un-

loads scheduling overheads due to resource comparison at the main scheduling

server. This design also paves way in designing a distributed scheduling system

as each additional resource is responsible for its own sharing of resources and

computation of indexes. This naturally allows the MRS to be possibly imple-

mented easily as both a central and distributed scheduling systems. In this

paper, we restrict the scope of simulation to a central scheduling design of the

MRS. However, we will present a discussion how a distributed MRS system can

be easily achieved.

We begin our evaluation of the performance of our proposed strategy in 2

dimensions, namely computation and data, while addressing requirements of

resources such as, FLOPS, RAM, Disk space, and data. We study our strategy

with respect to several influencing factors that quantify the performance. Our

study shows that MRS out performs most of the commonly available schemes in

place for a GCE. We subsequently expand the same strategy into 3 dimensions

(3D-MRS) to handle failure.

Using our pro-active failure model, we conclusively show that it is possible

to improve existing scheduling strategies and algorithms such that they are

able to prevent job failures during execution. Three strategies are introduced,

namely the SAA, NAA and NSA strategies. These are then augmented into

the backfill scheduling algorithm and the replication scheduling strategy. The

modified and unmodified algorithms are then compared. We further introduce

and compare 3D-MRS using these strategies and clearly show the improvement

in job reliability by introducing pro-active failure handling to this algorithm

using the proposed model.

1.3 Organization of Thesis

In this thesis, we first look at the Grid Computing Model that we will operate

in in section 2, investigating the resource environment and failure models in a

GCE. We then look at how we would measure the performance of our proposed

17

strategies in section 2.3. The allocation strategy and algorithm is then described

in section 3. This will include Multi Dimension Scheduling and the Failure

Prediction model. The extension of a dimension to include failure knowledge in

the MRS is then shown in section 3.3. The performance of these strategies are

then discussed in section 4. This is followed by a conclusion in section 5 and

proposed future work in section 6.

18

2 Grid Computing Model

In this section, we define the GCE in which the MRS strategy was designed.

We also look at the ways a failure can be observed and build a failure model

which can be practically used in a GCE. We then investigate the various perfor-

mance measures that can be used to measure the effectiveness of our allocation

strategies.

2.1 Resource Environment for Grid Computing

We first clearly identify certain key characteristics of resources as well as the

nature of jobs. A GCE comprises many diverse machine types, disks/storage,

and networks. In our resource environment, we consider the following.

1. Resources can be made up of individual desktops, servers, clusters or

large multi-processor systems. They can provide varying amounts of CPU

FLOPs, RAM, Harddisk space and bandwidth. Communication to indi-

vidual nodes in the cluster will be done through a Local Resource Manager

(LRM) such as SGE, PBS, or LSF. We assume that the LRM will dispatch

a job immediately when instructed by the Grid Meta-Scheduler (GMS).

The GMS thus treats all resources exposed under a single LRM as a single

resource. We find this assumption to be reasonable as GMS usually does

not have the ability to directly contact resources controlled by the LRM.

2. Changes in any shared resource at a site is known instantaneously to all

locations throughout the GCE. Without loss of generality we assume that

every node in the GCE is able to execute all jobs when evaluating the

performance of the MRS strategy.

3. Each computation resource is connected to each other through different

bandwidths which are possibly asymmetrical.

4. All resources have prior agreement to participate on the Grid. From this,

we safely assume a trusted environment whereby all resources shared by

19

sites are accessible by every other participating node in the Grid if required

to do so.

5. We assume that the importance of the resources with respect to each other

is identical.

6. The capacity for computation in a CPU resource is provided in the form

of GFlops. While we are aware that this is not completely representative

of a processor’s computational capabilities, it is at current one of the most

basic measure of performance on a CPU. Therefore, this is used as a gauge

to standardize the performance of different CPU architectures in different

sites. However, the actual units used in the MRS strategy does not require

actual performance measures, rather, it depends on relative measures to

the job requirements. We will show how it is done in later sections.

The creation of the job environment is done through the investigation of the

workload models available in the Parallel Workload Archive Models [16] and

the Grid workload model available in [25]. The job characteristics are thus de-

fined by the set of parameters available in these models and complemented with

additional resource requirements that are not otherwise available in these two

models. Examples of these resources includes information such as job submis-

sion locations and data size required for successful execution of the task. In our

job execution environment, we assume the following.

1. Resource requirement for a job does not change during execution and are

only of (a) Single CPU types, or (b) massively parallel types written in

either MPI such as MPICH1 or PVM2.

2. The job resource estimates provided are the upper bound of the resource

usage of a given job.

3. Every job submitted can have its data-source located anywhere within the

GCE.
1MPICH: http://www-unix.mcs.anl.gov/mpi/mpich/
2Parallel Virtual Machines: http://www.csm.ornl.gov/pvm/pvm_home.html

20

4. A job submitted can be scheduled for execution anywhere within the GCE.

Without loss of generality, we also assume that the applications to be

executed are already available in all sites within the GCE.

5. Jobs resource requirements are divisible into any size prior to execution.

6. In addition to computational requirements (i.e. GFlops, RAM and File

system requirements), every job also has a data requirement where-by

the main data source and size is stated. These data resources required

are accessible using GridFTP or GASS3 services provided by the Globus

Toolkit.

7. The effective run time of a job is computed from the time the job is

submitted, till the end of its result file stage-out procedure. This includes

the time required for the data to be staged in for execution and the time

taken for inter-process communication of parallel applications.

8. Resources are locked for a job execution once the distribution of resources

start and will be reclaimed after use.

A physical illustration of the resource environment that we consider is shown in

figure (1), and the resource view of how the Grid Meta-Scheduler will access all

resources through the LRM is shown in the figure (2).

2.2 Failure Model for Grid Computing

In this thesis, we define Failure to be the breakdown of communication links

between computing resources, thereby leading to a loss in status updates in the

progress of an executing job. This failure can be due to a variety of reasons such

as hardware or software failures. We do not specifically identify the cause of

the failure, but generalize it for any possible kind. We also assume that a failed

resource will be restarted and all history of past executions will be cleared. We
3Grid Access to Secondary Storage: http://www.globus.org/gass

21

Figure 1: Illustration of a physical network layout of a GCE.

Figure 2: Resource view of physical environment with access considerations

22

also use the term availability and capacity interchangeably as they both refer

to the number of resources that can be utilized at any point of time.

In order to build a model for resource availability, we first define the various

stages of availability that it needs to go through from the perspective of an

external agent. We place these stages in the following order:-

1. Resource coming online

2. Resource participation in Grid Computing Environment (GCE)

3. Resource going offline

4. Resource undergoing a offline or recovery period

5. Resource coming back online (return to first stage)

We do not identify the reason why the resource has gone online or offline from

the view of the external agent. The agent, however, does register that if the

resource goes offline, the possibility that any process that has been executing on

that resource could possibly be interrupted and might not be restored. Unless

the mechanism of execution allows for some form of check-point or recovery, the

past computation cycles on the machine can be assumed to be lost.

Taking these 5 stages viewed by the external agent, and generalizing the

states of the resource on the GCE, we easily classify that a resource has entered

a state of a general failure or has recovered from its unavailable failed state.

Thus, under these assumptions, from the resource perspective, we similarly

break down the participation of a resource in a GCE into the following stages:-

1. Resource becomes available to the GCE

2. Resource continues to be available pending that none of the components

within itself has failed

3. Resource encounters a failure in one of its components and goes offline for

maintenance and fix

23

Figure 3: Resource Life Cycle Model for resources in the GCE

4. Resource goes through a series of checks, replacements or restarts to see

if it is capable to re-join the GCE

5. Resource comes online and becomes available to the GCE (return to first

stage)

From the above stages, it was observed that in stages (2) and (4), the resource

undergoes a period of uncertainty. This uncertainty stems from the fact that the

resource probably might not fail or recover for a certain period of time. Based

on these stages the model presented in [43] was constructed. The Resource

Life Cycle (RLC) Model shown in Figure 3 identifies the stages where by Grid

resources undergoes cycles of failures and recovery, and also accounts for the

probabilities of each resource being able to recover or fail in the next epoch of

time. Thus using this model, we are able to describe any general form of resource

failure that would cause an external agent to lose job control or connectivity to

the said resource.

The execution environment defined in section 2.1 and the failure model pre-

sented in 2.2 allows us to be able to create an environment whereby resources

can join or leave the GCE at any point, at the same time, exhibit sudden fail-

ures, simulating that in a real environment. Resources will also be consumed

and re-injected into the systems as they cycle through different states of load,

allowing us to model the GCE subject to different workload models if required

to do so.

24

2.3 Performance measures

In order to verify the effectiveness of the MRS algorithm, we make use of the

following metrics of performance measure.

1. Average Wait-Time (AWT)

This is defined as the time duration for which a job waits in the queue

before being executed. The wait time of a single job instance is obtained

by taking the difference between the time the job begins execution (ej)

and the time the job is submitted (sj). This is computed for all jobs in the

simulation environment. The average job waiting time is then obtained.

If there are a total of J jobs submitted to a GCE, the AWT of a job is

given by,

AWT =

∑J−1
j=0 (ej − sj)

J

This quantity is a measure of responsiveness of the scheduling mechanism.

A low wait time suggests that the algorithm can potentially be used to

schedule increasingly interactive applications due to reduced latency be-

fore a job begins execution.

2. Queue Completion Time (QCT)

This is defined as the amount of time it takes for the scheduling algorithm

to be able to process all the jobs in the queue. This is computed by track-

ing the time when the first job enters the scheduler until the time the last

job exits the scheduler. In our experiments, the number of jobs entering

the system is fixed, to make the simulation more traceable. This allows us

a quantitative measure of throughput, where the smaller the time value,

the better. The queue completion time is given by,

QCT = eJ + EJ − s0

where, EJ is the execution time of the last job. This includes the I/O and

25

communication overheads that occurs during job execution.

This metric, when coupled with the average waiting time of a job, allows

us to deduce the maximum amount of time a typical job will spend in the

system for a given workload.

3. Average Grid Utilization (AGU)

This quantity investigates how well the algorithm is capable of organizing

the workload and the GCE resources so as to optimize the performance.

Thus, the higher the utilization, the better optimized the environment is.

The utilization of the GCE at each execution time step is captured and

represented as U(t) = Mu

M , where M is the total computational resources

available. Mu is the number of computational resources utilized. The

average grid utilization is thus given by the following equation.

AGU =

∑QCT
t=s0

U(t)
QCT

However, as these measures are not suited for investigating the effectiveness in

event of faults in the GCE, we evaluate the effectiveness in such circumstances

by capturing the job failure and rejection rates in each simulation. We define a

job to have failed when its execution is terminated due to a resource failure. A

job is rejected when its resource request exceeds what is stated available in the

scheduling algorithm. The job processing rate was also captured as an indication

of throughput of the resulting algorithm. We compute the various performance

indexes as follows.

1. Job Processing Rate (JPR):

JPR =
NumbeOfJobsSuccessfullyCompleted

TotalQueueCompletionT ime

A higher JPR will indicate larger number of successfully completed jobs

or a lower queue completion time. A high JPR will therefore indicate that

an algorithm is capable of high throughput.

26

2. Job Failure Rate (JFR):

JFR =
NumbeOfJobsFailedAtRuntime

TotalQueueCompletionT ime

A low JFR is desired as it signifies the number of jobs failing during the

course of its queue completion is low. This thus indicates that a strategy

is able to allocate resources will to reduce the number of jobs failing in its

course of execution.

3. Job Rejection Rate (JRR):

JRR =
NumbeOfJobsRejected

TotalQueueCompletionT ime

A low JRR indicates the ability of an algorithm to handle all types of

jobs submitted to the queue based on the workload model used. A high

JRR will therefore mean that the algorithm is unable to execute jobs

due to insufficient capacity. A low JRR is thus desired to indicate that

an allocation strategy is able to handle the workload presented using the

workload model.

27

3 Allocation strategy and Algorithms

This sections presents the n-dimensional MRS allocation strategy and the failure

prediction model that can be used to augment existing allocation strategies. We

then highlight how MRS is extended into 3D-MRS where the new dimension

would include the knowledge of availability of a resources.

3.1 Multi-dimension scheduling

As stated earlier, MRS is a n-dimensional allocation strategy. In order to make

use of this strategy, the dimensions to consider must first be decided. The

dimensions should be the general classifications of resource requirements that

would be required by a job. We make use of two basic dimensions (1) Com-

putation, and (2) Data, in our simulations in order to verify the effectiveness

of our strategy. These two dimensions are chosen due to the general require-

ment to achieve faster computation through proper resource allocation such as

GFLOPs, RAM and disk, and better data resource allocation to achieve higher

I/O throughput. Aggregation of the various available resources are then com-

bined into two major indices based on these two dimensions. We refer to these

indices as the Computational and Data Index respectively.

From the two indices, we create a 2-dimensional (2D) plot with the Com-

putation and Data Index. This 2D plot describes the virtual topology of the

job resource requirements, situated at the origin, to the resource providing sites

in the GCE. We call this virtual topology a Virtual Map. It is thus clear that

each site has two indices that describes its suitability for the job. The most

suited resource providers will be the sites whereby it is located nearest to the

origin. The sections below will demonstrate how we construct the two selected

dimensions and the process of aggregation that leads to the final aggregated

Indexes used in the Virtual Map.

28

3.1.1 Computation Dimension

Resources in the computation dimension consist of entities that would impact

the efficient computation of a job. Each resource is in turn represented by

a capability value and a requirement value. In our simulations, we make use

of the following allocable resources as basis for scheduling in the computation

dimension:

• GFLOP (C)

• RAM (M)

• Disk space (F)

However, we note that this is insufficient to represent a collection of sites and

how they can possibly inter-operate with each other. A job submitted to a

poorly connected site will be penalized when job fragmentation occurs or when

the data required for processing is located in another location.

In order to minimize the detrimental effects in such cases, we introduce a

parameter referred to as the Resource Potential. This is to assist in the evalua-

tion of the Computation Index. The potential, denoted as Pi , of a resource Ri

quantifies the level of network connectivity between itself and its neighboring

sites. For simplicity, we assume that the network latencies as well as the com-

munication overhead of a resource is inversely proportional to its bandwidth.

With m representing the total number of sites, we refer to the Resource Po-

tential, Pi of a resource Ri, as a form of “Virtual Distance”, where 1 ≤ i ≤ m.

This is computed as Pi =
∑

Bij where, B is the upload bandwidth, expressed

in bits per sec, from Ri to Rj for i 6= j and Bij = 0 if i = j. This effec-

tively eliminates all network complexities and “flattens” the bandwidth view

of all the resources to the maximum achievable bandwidth between resources.

This also inherently includes all sub-net routing overheads and communication

overheads when a bandwidth monitoring system such as NWS [12] is employed.

We illustrate this “flattening” process in figure (4). The values C, M , F and

29

Figure 4: Flattened network view of resources for computation of Potential

Pi dynamically change with resource availability over time t, and is constantly

monitored for changes in our simulation. Thus, in a GCE where we character-

ize the resource environment as a set S = {R1, ..., Rm}, we can represent the

allocate-able computational resources within a site i as a set Sc = {Ri, t} where

Sc ⊆ S. Ri further represented by 4-tuple of fi(< C, M, F, Pi >, t) denoting the

four resources considered in our allocation strategy.

In order to ascertain an aggregated Computation Index of a site to a job,

resources are also requested based on the same GFLOPs, RAM and Harddisk

space required. Similar to a node’s Resource Potential described earlier, jobs

are also additionally characterized by a potential value. However, this potential

value is not obtained from the location where the job is submitted from, rather,

it is obtained from the location of the source file required for the job to execute

efficiently. In our simulations, we assume that each job only requires data from

one data resource. This data resource can be either local to the job submission

site or remote. As MRS is expected to operate in a GCE, we also simulate

30

scenarios wherein users can submit jobs from different locations4.

We characterize the job environment by J = {Ai, ..., Aj}, and the com-

putational requirement of each job Aj in the set of J jobs is represented by

gj(< C, M, F, Psrc >, t).

3.1.2 Computational Index through Aggregation

Evaluation of various resource requirements of sites and jobs allows us to ag-

gregate their values and encode inter-resource relationships in order to arrive at

a single computational index such that it can be used to obtain the allocation

score. This is done by obtaining a ratio of provision (Rij), for site i and job j,

between what is requested and what is possibly provided. For computational

resources, it is given by, Rij{C} = 1− fi{C}
gj{C} . We consider only the positive val-

ues of Rij{C}, such that and Rij{C} = 0 if the above evaluates to be less than

zero. fi{C} and gj{C} are the GFLOP resource provided at site i and GFLOP

resource required by job j. We only consider positive values in the Virtual Map,

and therefore truncate the values at zero. We make several observations in this

equation.

1. Perfect ability to provision for a resource results in this value being 0.

2. Inability to provide for a resource results in 0 < fi{C}
gj{C} < 1. The Rij{C}

value would approach 1 as the inability to provision a resource to a job

increases.

3. Over-ability to provision resources for a job results in the Rij{C} = 0.

We apply the same ratio of provision to all resource and requirements within

the computational dimension which also includes RAM (M) and Harddisk (F)

requirements. Additionally we also include the ratio of provision between the

potential value of the site (Pi) and the source file potential (Psrc). This allows us

to evaluate if a site connectivity is equal or better to where the source data file

is located. This ensures that the possible target job submission site will not be
4Without loss of generality, we have assumed that applications are pre-staged at the sites.

31

penalized more than required if job fragmentation is to occur, when compared

to executing the job in place at the data source location.

These ratios are then aggregated into a resulting dimensionless computation

index (xi) for site i on job j using the following equation. Constants KC , KM ,

KF and KP represents weights that provide modification to the importance of

the respective provisioning ratios in terms of importance to each other. A value

of 0 < K < 1 signifies a lower relative importance of a specific computational

resource while K ≥ 1 represents equal or greater relative importance when

compared to other resources. After the sites providing resources are indexed

to obtain xij , the site i with the lowest computation index, x∗ij is deemed to

provide the best resources suited for a job j. In our simulations, we set the

Kconstants such that K = 1.

xij =
√

1
KC

Rij {C}2 +
1

KM
Rij {M}2 +

1
KF

Rij {F}2 +
1

KP
Rij {P}2 (1)

3.1.3 Data Dimension and indexing through resource inter-relation

In the data dimension, we wish to inter-relate resources that would affect the I/O

of a job and evaluate an index that aids us in determining a good resource site

that would best execute a job. The expected time for I/O is determined based

on the estimated data communications required and the bandwidth between the

source file location and the target job allocation site. The ratio between the I/O

communication time to the estimated local job runtime is then taken. This ratio

allows us to evaluate the level of advantage a job has in dispatching that job to

a remote site. This is because a site capable of executing a job locally would

incur a minimal (not-zero) I/O time as compared to any other remote location.

Thus, allocation of a job to the intended target resource should be one whereby

this ratio is as low as possible.

The I/O time is mainly dependent on the availability of bandwidth at a

site. The available bandwidth also changes over time depending on if a resource

32

is sharing any of its network resources with other resources in the GCE. This

is also captured as a sequence of complete network allocation for a job in our

simulator. We annotate bandwidth B between two sites i and j as Bij =

min{Bdownload
ij , Bupload

ji } which changes over time t as data capabilities of a

resource Sd{Ri, t}. Where each item in this set is represented by di{< B >, t}.

The data requirement of a job j is thus represented by ej{< F,Aruntime >, t}

where Aruntime is the estimated runtime of the job.

We make use of this ratio to create the Data Index. This evaluation is an

example of aggregation based on resource inter-relation. I/O time is affected

by the amount of data for a job and the actual bandwidth resource available.

In the worst case scenario, the amount of data required for the job would also

be the amount of hard-disk resource required at the site to store the data to

be processed. This, therefore inter-relates the data resources to the bandwidth

resources available. The ratio is written as follows.

yij =
ej {F}
di {Bij}

.
1

Aruntime
(2)

It is noted that yij continues to be dimension-less and a smaller value would

represent a better site i preference when compared to a larger one. An (as-

cending) ordered yij would rank sites with the better advantage in handling job

fragmentation compared to those ranked later.

3.1.4 Dimension Merging

From the individual Computation and Data Indices described above, we observe

that the best allocated resources are represented by those with low index val-

ues. Each of the individual indices are also encoded with resource requirements

considerations in its evaluation through aggregation. These points when plot-

ted on a 2-dimensional axis creates what we termed as the Virtual Map that

is described in section ??. As we have observed, sites that position themselves

closest to the origin are those that deviate from the resource requirements by

33

Figure 5: A Virtual Map is created for each job to determine allocation

the least amount. An illustration of the virtual map is shown in figure (5). The

euclidean distance from the origin therefore denotes the best possible resources

that matches the resource requirements of a job for an instance in time.

In figure (5), the computation and data index is computed by equation (1)

and (2) for each job in the queue. As job requirements differs for each job,

the Virtual Map is essentially different for each job submitted. This has to be

computed at each job submission cycle.

3.2 Formulation for Failure Prediction

The formulation of the failure prediction model is based on the observation of

pro-active and passive failure handling techniques stated below. This is then

followed by the mathematical modeling of failure which will bring us to the

ability to approximate or predict the failure events of a resource. We cover in

34

Figure 6: Passive and Pro-active mechanisms used to handle failure

detail the analysis and formulation in this section.

3.2.1 Pro-active Failure Handling versus Passive Failure Handling

In most of the mechanisms that improves the resilience of a scheduling strategy,

it has been observed that steps were taken to re-schedule a troubled job, or

replicate jobs hoping that one of them is successful. Mechanisms such as those

in [41, 39] works in this fashion. In general, it was observed that the handling

of failures by allocation strategies can occur either before the actual allocation

itself, or after the allocation of the resources. We term these methods as Pro-

active or Passive methods respectively.

While Passive methods using techniques of job monitoring are relatively

easier to implement, Pro-active methods requires more information from the

GCE and works in a probabilistic fashion. While there exist pro-active methods

35

such as replication where the decision of how to address possible failures in the

GCE are made before the job is executed, we find that such static mechanisms

are unable to cope with the dynamism of the GCE. An effective pro-active

strategy should provides a way, with all information considered, deny any job

from any possible failures. This potentially reduces the failure rates within

a GCE, and also increases the capacity and throughput in a system. This is

unlike passive methods where re-submission of jobs typically leads to a decrease

in throughput in the system. It is, however, worth while to note, as shown in

figure (6), that both pro-active and passive methods are not substitutes to each

other, but rather, they are compliments. One will never be able to fully predict

the state of the GCE, and every pro-active method will have cases where it is

unable to accurately reflect the state of the GCE. It is thus beneficial to continue

to include passive failure handling mechanisms to assist in such situations.

3.2.2 Mathematical Modeling

In order to construct a pro-active scheduling strategy, we first construct a math-

ematical model based on the above mentioned Resource Life Cycle so as to be

able to predict the capacity in a GCE given a total fixed number of resource that

can possibly participate in the environment. The purpose of the mathematical

model is to allow us to be able to answer the following questions:-

1. How many nodes would there be in the Grid at a certain time?

2. What is the probability of a job being able to complete its execution?

Addressing these questions will allow our strategy to be able to dispatch jobs

only to resources that will more likely guarantee the successful completion of

the job, and know ahead the likely capacity of the GCE at a point in the future.

We first define the following variables:-

• MTTF and λF : The Mean Time to Failure represents the average amount

of time a resource is available to the GCE before going offline. We also

term the average rate of failure to be λF = 1
MTTF .

36

• MTTR and λR : The Mean Time to Recovery represents the average

amount of time taken for a resource to rejoin the GCE after going offline.

We also term the average rate of recovery to be λR = 1
MTTR .

• τ , τD and τU : τ represents a specific time instance after the time period

T , while τD and τU are defined as the duration of the state times of a node

either in DOWN or UP states. We note that for a node, if τD > 0 then

τU = 0 and vice versa.

• ST : The number of nodes available for a period of time T .

• MT : The number of nodes unavailable for a period of time T .

• KT : This equals to the total number of nodes in the GCE that we would

like to consider, and KT = ST + MT , for all values of T .

• P : The resource reliability is a single value representing the likely-hood

of a resource staying online at any given time. This value is influenced

by information such as the resource availability pattern to the GCE, the

reliability of the various components in the resource and the reliability

value provided by the creators of this resource.

• Q : The resource unrecoverbility is a single value representing the likely-

hood of a resource recovering form its offline state at any given time. This

value is influenced by information such as resource unavailability pattern

to the GCE, the difficulty to replace parts in the resource that has failed

and the service level provided by the creators of this resource.

• PrUP and PrREC : The probabilities of a resource remaining in its UP, or

online, state and recovering from its DOWN, or offline, state respectively.

Note that the MTTF and the MTTR values are collectively termed as MTT

values in the rest of this paper.

The above questions can now be paraphrased more specifically as:-

37

1. How many resources are there at T + τ time given that there are ST

resources available and MT resources unavailable at time T?

2. What is the probability of a defined set of resource staying up over a

period of time τ?

The answer to these questions will allow one to be able to estimate the capacity

of the Grid in the future. It would also allow one to approximate the likely-hood

of a successful job completion when dispatched to a known group of resources.

Alternatively, one can also choose to dispatch jobs only to resources that are

likely to remain available to ensure successful job completion.

We note that in our model, a resource can have exactly one failure or recovery

before it switches its state from being online to offline, or vice versa. We also

note that if given that the MTT , P and Q values are reliable, the duration

of a resource being online would highly affect the probabilities of a resource

remaining in steady state.

We assume that each event of a state switch are independent of each other.

While this assumption might not be true when observing the failures over an

entire period of time such as T , we find that this is a reasonable assumption

when only considering a very small instance in time between τ − 1, τ and τ +1.

Using the Poisson Distribution to model the event of a single change in state,

we obtain the probabilities of this event as the following:-

• Probability of a failure due to MTTF after period of UP state at τU

λF

τU∑
t=0

e−λF tλF t (3)

• Probability of a resource recovery due to MTTR after a period of DOWN

state at τD

λR

τD∑
t=0

e−λRtλRt (4)

In addition to a resource changing states due to the MTT values, it has to

be considered that there are other factors that could cause a change in state

38

which was represented by P and Q. As the probabilities of P and Q are inde-

pendent from the MTT values, it is possible to obtain, for a single resource, its

probability of remaining in its UP or DOWN state as:-

• Probability of a resource j remaining in its UP state at τjU

PrjUP = 1− λjF (1− Pj)
τjU∑
t=0

e−λjF tλjF t (5)

• Probability of a resource j recovering from its DOWN state at τjD

PrjREC = λjR(1−Qj)
τjD∑
t=0

e−λjRtλjRt (6)

Considering that there is a set of n resources where 1 ≤ n ≤ ST , the proba-

bility of this set of resources remaining in the UP state at T + 1, will be given

by the following equation.

PrUP {nT+1} = 1−
n∏

j=1

λjF (1− Pj)
τjU∑
t=0

e−λjF tλjF t (7)

Similarly, for a set of n resources where 1 ≤ n ≤ MT , the probability of this

set of resources recovering from its DOWN state at T + 1, will be given by the

following equation.

PrREC{nT+1} =
n∏

j=1

λjR(1−Qj)
τjD∑
t=0

e−λjRtλjRt (8)

Equations (7) and (8) provides a method whereby it is possible to estimate

the number of resources available at T + 1. Under the assumption that the

resources remains in constant state within τ period of time, it is possible to

extend equations (7) and (8) to estimate the probability of PrUP and PrREC

at time T + τ . This is represented by equations (9) and (10) respectively. It

is noted that we terminate the summation of the probability distribution at

τU + τ − 1. This is due to the fact that the state of the resources at τ is

dependent of its likely-hood of consistency at τ − 1.

39

PrUP {nT+τ} = 1−
n∏

j=1

λjF (1− Pj)
τjU+τ−1∑

t=0

e−λjF tλjF t (9)

PrREC{nT+τ} =
n∏

j=1

λjR(1−Qj)
τjD+τ−1∑

t=0

e−λjRtλjRt (10)

From the RLC model and equations (9) and (10), it is therefore possible

to estimated the number of resources available at ST+1 as ST PrUP {ST+1} +

MT PrREC{MT+1}. This is further extrapolated to obtain an estimation of the

number of resources available at ST+τ given by equation (11).

ST+τ = ST PrUP {ST+τ}+ MT PrREC{MT+τ}+ eT (11)

In Equation (11), eT is the error adjustment in prediction based on the aver-

age historical error predictions made. This can be easily captured by recording

and taking the average of the difference between the number of resources pre-

dicted to be available at T and the actual number of resources available at T +1.

Equation (11) ultimately states that the number of UP nodes available at T + τ

is the sum of the number of nodes staying up and recovering at time T + τ − 1.

PrUP {ST+τ} and PrREC{MT+τ} are the probabilities of a node staying in the

UP state and recovering from a DOWN state at time T + τ respectively. This

enables us to approximate the acceptance a job and subsequently run it at any

point of time in the future.

While simulations of the prediction mechanism based on (11) has shown to

be able to estimate the number of resources in a Grid Computing Environment

(GCE) within the bounds of ±2, it is clear from the equations that this, however,

requires analysis of each resource and can be unwieldy in both computation

and information required. The advantage remains, however, that all equations

leading up to Equation (11) provides a way to approximate the available of a

single or a group of resources.

40

In seeking a less computationally intensive mechanism to estimate the num-

ber of resources, it was noted that the MTT values alone where able to estimate

the capacity of the GCE over a long period of time. The resulting GCE capacity

obtained shows that the average availability of the GCE can be estimated by

using the General Availability Equation (GAE)
P

MTTFP
MTTF+

P
MTTR . This pro-

vides the average capacity in the GCE, allowing the allocation strategy to be

able to define an upper limit to the number of resources requested by the job

at the point of submission. This prevents users from over-requesting resources

thereby leading to failures that can affect throughput. However, while the GAE

provides the average number of resources in the GCE, the shortcoming of the

GAE is that it does not provide any information as to which resource will be

leaving or rejoining the GCE. This lends itself to be unable to determine the

availability of a specific set of resources within the GCE.

3.2.3 Comparing Replication and Prediction

We theoradically compare the difference between two pro-active allocation strate-

gies, namely (1) Replication and (2) Prediction. We show that it is meaningful

to try to approximate the capacity of the GCE before job submission and it

would benefit the allocation strategy if it tries to do so.

• Replication

Assuming that a GCE consists of S resource. It is required to process a queue

containing J number of jobs requiring T amount of time to process. Given that

the value of GAE is α, the effective capacity of the GCE would be represented

by αS. In the case of job replication, a job is submitted K times into the GCE

(where K ≥ 2) . This results in the GCE being unable to execute any job

requesting for exactly S resources, thereby limiting the maximum capacity by

a factor of K. The maximum job load of the GCE accounting for its effective

capacity is thus given by Sα
K . Assuming further that the expected time of each

job j to complete is ET [j] and the theoradical time required for the job to

41

Figure 7: Probability of success versus α under varying replication factors K

complete its execution is HT [j], we can conclude that if the requested job load

Lj ≤ Sα
K , there would be enough capacity in the GCE to be able to execute all

the replicas of the job at the same time. If j is successfully executed, it is noted

that ET [j] � HT [j]. If the MTT values of the replica set is identical to that

of the GCE, the probability of all replicas failing will be given by (1− α)K . It

is clear to note that the probability of any replica to succeed is 1 −K(1 − α).

It is observed in figure (7) that increasing the replication factor of K results in

the rate of the probability of j to succeed in its execution also by K, However,

this benefit in replication is offset by the fact that the GCE is required to

satisfy α = 1− 1
K before this advantage is realized. This defines a requirement

on the GCE to satisfy this criteria. It is noted that as K increased, the site

availability required for any of the job replica to succeed also increases. We find

this conclusion consistent with many other experiments that concludes that the

best level of job replication is when K = 2, providing the best balance between

the requirement of the GCE versus the level of improvement when replicating.

42

In event where the requested job load Lj ≥ Sα
K , j and its replicas will no

longer expect to be executable all at the same time, but at an instance in

time whereby Sα
K = Lj . This will however be highly subjected to failure as

the expected GCE capacity is less than that of Lj . In the best case, the first

replica will complete and ET [j] = HT [j]. In the worse case, ET [j] � KHT [j].

Assuming that the average time to complete any job j under these circumstances

is (1+K
2)HT [j], we can effectively conclude that the average time taken to process

the entire queue will be T = J(1+K
2)HT [j] , which is on the average 1+K

2 times

longer than the theoradical time. This effectively decreases the throughput of

the GCE which is given by 2
HT [j](1+K) .

In both circumstances of job replication shown above, it was established

that such a strategy always results in either a lowered capacity in the GCE, or

a reduction in throughput in the GCE, and in some cases, both.

• Prediction

Assuming a similar setup of a GCE as that used above, the effective capacity of

the GCE continues to be Sα where α is the GAE value obtained for the entire

GCE with J jobs. For the sake of prediction, we introduce the probability that

a wrong prediction will be made for each resource Er. We further assume that

a wrong prediction on a resource will always result in a failure. We maintain

that the expected time for a job j to complete continues to be ET [j], while the

theoradical time for it to complete is HT [j]. Given that j will be divided into

k nodes for execution, where 2 ≤ k ≤ S, the probability of a job succeeding in

its execution is dependent on all the subdivisions successfully executing. This

is given by Pr = (1− Er)k as shown in figure (8).

In the figure, it is noted that probability of success for each job j depends

on the division factor k. This is analogous to the degree of parallalizm in the

application, and is consistent with the fact that the more a job is divided into

different resources, the more likely it is to fail. We also note that this probability

43

Figure 8: Probability of success Pr versus Er under varying division factors k

of success is not affected by the capacity S of the GCE and does not impose

a minimum requirement of the GCE to be available before a job can succeed

in execution. It is noted that errors in prediction results in an exponential

decline in the probability of success of j. However, when prediction is used with

other failure detection techniques and subsequently re-submitted for R number

of times, the probability of success is improved by a factor of R. The probability

of success is thus changed to Pr = R(1 − Er)k. A variation of Pr is shown in

figure (9). We note that the resubmission of j by R = 2 can result in a definite

completion of j when Er is 0.15. This threshold of prediction error is even

higher when k = 2, meaning that even a prediction error of 0.25 when split over

two resources can almost absolutely result in a successful execution of j. Once

again, this certainty varies from job to job and is not dependent on the capacity

of the GCE as long as Lj ≤ S.

This certainty allows one to be able to choose the R factor considering the

type of workload the GCE is subjected to. If given that all jobs in J has k ≤ 4,

it can be then decided that a R = 4 with Er = 0.25 will result in all jobs

44

Figure 9: Probability of success Pr versus Er under varying R with division
factor k = 4

being completed in the queue with T < JRHT [j]. The throughput of such a

strategy is therefore equal or greater than 1
RHT [j] . The actual throughput is

once again dependent on the workload model applicable in the GCE. However,

it is noted that, as prediction operates independently of the variables required in

replication, these two strategies can be used together to improve the successful

throughput of the GCE.

From the above comparisons, we can clearly see that the ability to predict

the resource states does not acts as a substitute to existing strategies. This is

due to the fact that prediction does not depend on site capacity but rather on

the accuracy of the prediction and the workload model in the GCE. This results

in the ability for prediction mechanisms to enhance existing strategies to assist

in the assurance of the completion of a job. When both pro-active and passive

methods are combined, premature job terminations resulting from environment

failures should be greatly reduced.

45

3.3 Improving Resilience of Algorithms

From Section 3.2, we have obtained two mechanisms whereby it is possible to

pro-actively circumvent the possibility of failures during the course of job exe-

cution. This is achieved by (1) making use of individual node MTT values and

predicting the availability of each node over a course of time τ , or (2) by using

the GAE to obtain the long term capacity of the GCE. In both cases, once the

expected capacity or the prediction of availability is available in the scheduling

mechanism, it is possible for the scheduler to make informed decisions in its

execution schedule. This is inherently different from other passive techniques

[42, 41, 40]. While passive mechanisms, the scheduler is typically unaware of

the Grid state prior to scheduling and only reacts to job failure when it detects

abnormalities in the job, pro-active mechanisms allocates jobs based on past

and existing states of the Grid. It does so in a manner that it best avoids any

possible event of failure that can occur when the job is submitted.

3.3.1 Pro-active failure handling strategies

In this section, we introduce 3 pro-active strategies to assist in job allocation to

avoid job failures. They are :-

1. Site availability based allocation (SAA strategy)

In this method, we make use of the GAE to estimate the largest job that

the GCE is capable of accepting in the long run and reject the submissions

of job requirements that are larger then the GAE computed capacity. This

acts on the fact that resources are wasted when jobs that are allowed into

the GCE fails during its execution. This avoidance of jobs that can cause

this situation will therefore allow the remaining jobs to have a higher

probability in executing successfully.

2. Node availability based allocation (NAA strategy)

We make use of Equation (10) in this mechanism to obtain a sorted set of

nodes with decreasing probability of staying in the UP state over a jobs

46

expected runtime. Jobs are then only allocated to this set of nodes in

order to ensure a higher probability of completion. This strategy tries not

to cause a synthetic reduction in the number of resources available in the

GCE as it tries to utilize all available resources at any point of time. This

is unlike mechanism (1) where the estimated capacity will always be less

then that of the total GCE capacity.

3. Node and Site based allocation (NSA strategy)

This method combines mechanism (1) followed by (2) in order to first

ensure that the job requirements are realistic in view of the long term

availability of the GCE, followed by a resource allocation strategy such

that the resources the job is dispatched to will have a higher probability

to complete its execution. We use this strategy to observe if there is

any significant advantage in the increase in allocation complexity versus

results.

Based on these strategies, we will modify existing algorithms to ascertain the

performance for each of these allocation schemes. In addition, we will propose

an extension to the algorithm proposed in [45] by the addition of a probability

dimension. We discuss the modifications to the algorithms in section 3.3.2.

3.3.2 Modifications to Algorithms

In order to verify the capabilities of pro-active failure handling within scheduling

algorithms, we implemented SAA, NAA and NSA into the following algorithms

for comparison:-

1. Backfill Algorithm [27] (BF)

2. Replication Algorithm [44] (REP)

3. Multi-Resource Scheduling Algorithm [45] (MRS)

In these algorithms, BF and REP were selected as they are well known algo-

rithms. BF serves as a baseline for comparison, allowing us to observe the ad-

47

vantages in implementing pro-active failure handling techniques in traditional

algorithms for GCEs. The REP algorithm is implemented with a replication

factor of 2. This provides a mechanism that allows us to be able to observe

the advantage of combining predictive mechanisms with more common failure

prevention techniques.

The MRS algorithm we have presented in [45] was also extended as a novel

approach to allocating resources with considerations of availability in the GCE.

This is simply done by extending an additional dimension within MRS. We

refer to the modified version of MRS as 3D-MRS. This additional dimension

is included as a Availability Index ranging between 0 and 1. This corresponds

directly to the PrUP for each resource. In a similar fashion described in [45],

resource selection under MRS is based on the minimum euclidean distance to

the origin based on values provided by all three axes. This allows us to consider

factors such as computation, data as well as availability provided by that of

a GCE resource with only linear increase in computational complexity of the

allocation strategy.

In all three cases, SAA was implemented with no change in the scheduling

strategy other than adding a filter before the actual allocation stage within

the algorithm. This serves as a filter point that rejects jobs that exceeds the

GAE percentage value of the GCE. In BF and REP, the NAA strategy was

implemented by computing the PrUP value of all the available GCE resources

in the period of τ defined as the runtime of the job. These values are then sorted

in a decreasing order. Jobs are then allocated to these resources in the order

sorted so as to provide allocation to resources that are more likely available. For

MRS, NAA was implemented as a third dimension to the allocation strategy

and the resource availability considered during the computation of the euclidean

distance determining the “goodness of fit” to the intended resource. As described

in [45], the lower this value is, the better the defined resource is for allocation.

The NSA strategy for BF, REP and MRS are implemented as a combination

of SAA and NAA. A filter is used to first reject jobs requesting for resources

48

greater than the computed value of general availability of the GCE, and the

availability of the individual nodes computed and sorted to obtain the nodes

that are predicted to be more likely available. Jobs are then allocated in the

order similar to that in the NAA strategy.

49

4 Performance Evaluation

4.1 Simulation Design

From the MRS allocation strategy, we proceed to implement the scheduling

mechanism, which will later be extended to accommodate failure events, in the

GCE. There are several points observed in the implementation of the system

made to support the MRS scheduling strategy.

• Each dimensional index is independent between sites and can therefore be

computed locally at the participating sites within the GCE.

• A job can be submitted from any node within the GCE, a resource re-

quirement broadcast mechanism with timeout was implemented for each

job to announce itself to the sites within the GCE. This allows sites within

the GCE to obtain the specific requirements for each job and evaluate its

computation and data indexes accordingly. The timeout for requirements

broadcast effectively truncates sites that do not reply within a certain

delay. This is a simple mechanism to efficiently truncate sites that are re-

sponding too slowly to requests due to high load or congested bandwidth.

• A caching mechanism was implemented in the participating sites in or-

der to help reduce the communications overheads. As resources are not

always available to handle jobs at the time of job submission, these jobs

requirements would have to be resent in a broadcast whenever a change

in resource availability is detected.

A job allocation communication in event of a new job submission is as follows.

1. New job announces itself to entire GCE using a unique job ID together

with its requirements.

2. Sites receive broadcast and acknowledge (ACK) with euclidean distance

of its Virtual Map location to origin. Sites also cache the requirements

locally.

50

3. Job submission location waits for a timeout and collects all ACK responses

and sorts the results in ascending order

4. Full job description is dispatched to the target site

5. Target site acknowledges receipt of full job and begins processing execution

request. Job submission location then issues a “cache clear” to all sites for

this job ID.

In event of a job re-submission, the following process takes place.

1. Job re-announces submission request to the GCE.

2. Sites with requirements in cache ACK with euclidean measure. Sites with-
out requirements in cache ACKs with requirements request.

3. Job submission location sends requirements to the other sites and waits
for timeout.

4. Sites receives requirements and acknowledges (ACK) with euclidean dis-
tance of its Virtual Map location to origin. Sites also caches the require-
ments locally.

5. Job submission location waits for a timeout and compiles all ACK re-
sponses and sorts the results in ascending order

6. Full job description is dispatched to the target site

7. Target site acknowledges receipt of full job and begins processing execution
request. Job submission location then issues a “cache clear” to all sites for
this job ID.

From the above process, several advantages in the implementation of the MRS
strategy is observed :-

• The indexes, being independent between sites, are evaluated within sites.
It does not require any system monitoring mechanism to inform a master
scheduler about its state. Thus reduces the complexity of the entire system
during implementation.

51

• The main scheduler in the MRS does not contain complex algorithms
and is only required to sort the resulting euclidean measure that is ob-
tained from the GCE. Only job tracking functionalities are required at
the various locations where job submission is permitted. This allows the
strategy to scale better when more resources are added into the GCE to
be considered. It also allows more inter-resource relations to be defined
as separate dimensions without computational penalties as in a central
scheduling strategy.

• Multiple MRS schedulers can co-operate in a large scale GCE. This is
because the ability of resource provision is computed at the sites itself.
Therefore, each site its willingness to accept a job. As multiple jobs arrive
in a site, the Euclidean measure is computed sequentially and resources
pre-emptively deducted. These resources will be re-included in the site
as a “cache clear” is received for the intended job ID. This ensures that
resources are correctly reported at every ACK to the job submission lo-
cations. This also provides a starting point for implementing a scalable
distributed scheduling mechanism to support a large scale GCE.

• Independent resource policies can be implemented at every site as the
Euclidean measure is calculated within the site. This allows the site ad-
ministrators to be able to easily define the amount of shared resources
available to the GCE without consulting a GCE administrator. Essen-
tially, this reduces the involvement of the administrator in defining “rules”
in resource allocation. Again, this reduces the implementation complexity
of the MRS system.

• The broadcast and ACK mechanism used in MRS provides a way to iden-
tify sites that are disconnected from the site. The time-out function also
allows the strategy to discard sites whose resources are possibly more
scarce. This helps MRS in identifying sites that it can continue to sched-
ule to even as sites leave and join the Grid environment.

The system and strategy for MRS can be described as a class of Job Sharing
strategies operating within a Multi-Site Computing model [26]. However, when
MRS is compared to the models described in [26], clear stages in resource selec-
tion and scheduling algorithm does not exist. The computation of the indices
combines the selection and scheduling stages and thus reduces the fragmentation
of resource considerations during resource allocation and scheduling.

In a strategy wherein resource matching is followed by allocation through
a scheduling algorithm, where there are n computing sites in the GCE and m

52

resources to consider, the time complexity of the resource selection stage would
be O(nm). This results in undesirable slow-downs when there are either a huge
number of sites, or when there is a large number of resources to consider. The
total time is therefore the sum of time-to-allocate and the time-to-schedule.

In MRS, the broadcast of requirements is of time complexity O(n) as each
site will only need to receive the resource requirements of a job once. However,
due to broadcast, network latencies will be involved, which can possibly lead to
slow-downs in MRS. This can be easily prevented by “dropping” sites that do
not acknowledge the broadcast in a fixed amount of time. We, thus set an upper
limit of the Time-To-Live (TTL) for each broadcast depending on the network
environment MRS is operating in. The worst-case overall time taken for MRS
to schedule can thus be written as 2n.TTL + max(CTn), where max(CTn) is
the maximum time taken for index computation for a single site. The time-
complexity therefore remains linear with increase in sites as well as resources
when using MRS.

We also investigated the computational complexity of MRS compared to
other Job Sharing strategies in a Multi-Site Computing Model. When a strategy
separates the resource selection and the scheduling phases, two main components
contribute to the computational complexity of the strategy for each job. First,
the sorting and filtering methodology used in the resource selection phase, and
secondly, the scheduling complexity incurred in the algorithm used. In MRS,
the creation of the Virtual Map for each job is essentially a sort of the (x, y)
indexes provided by the sites participating in the MRS. This is simplified further
when we use the Euclidean distance as a measure of match. The computational
complexity is therefore only dependent on the sorting algorithm. This is because
scheduling in MRS is a one step process. It is also noted that the computation
complexity of the indices provided by the participating sites is linear to the
number of resources and the number of dimensions we wish to consider in the
Virtual Map. The increase in the number of sites or resources therefore has no
effect on the overall allocation strategy provided in MRS, and thus limits the
computation complexity to that of the sorting algorithm used in the system.
This is unlike other strategies which can still incur computation complexities in
the other stages of allocation. In our implementation, the sorting strategy used
is a stable merge-sort where the complexity is O(nlogn).

It should be noted that in MRS, resource considerations are not limited to
dependencies. Additional requirements or dependencies can be easily added
by extending the number of dimensions to be considered within MRS. This
does not severely impact the complexity of MRS in both time and computation
complexity when compared to other methods.

53

Type Availability Run-Factor
Dedicated Grid (DG) 0.9 [0.1, 0.01, 0.001]
Desktop Grid (EG) 0.3 [0.1, 0.01, 0.001]
Hybrid Grid (HG) 0.5 [0.1, 0.01, 0.001]

Table 1: Table of Simulated Environments

The broadcast of resource requirements in the GCE is done “all to all” due
to the nature of Job Sharing. This is potentially wasteful when jobs have to
be rescheduled due to the lack of resources or are delayed for some reason. We
reduce the impact of broadcasting by allowing sites in the GCE to cache all
requirements of unscheduled jobs upon reception of a broadcast. Subsequent
notifications to try to schedule the same jobs will therefore incur much less
overheads in communication. A cancellation broadcast was also introduced to
notify all participating sites in the GCE to remove an unscheduled job from its
cache. This keeps the entire GCE in sync of the jobs that are remaining to be
scheduled.

In our experiments, we use a workload model based on [?] to generate a

synthetic workloads consisting of both massively parallel and embarrassingly

parallel jobs. We further include the resource model as discussed in section 2.2

into the described environment above such that at any point of time, resources

will be able to “fail” based on a probability following a normal distribution

based on the MTTF and subsequently recover in the same manner based on

the MTTR values.

We investigate several operating environments in order to ascertain the dif-

ferent performance that will be exhibited under various failure circumstances.

We map the simulations based on table 1. We base these environments on the

fact that it is possible to distinguish GCEs into Dedicated Grids, Desktop Grids

and Hybrid Grids.

We refer to Dedicated Grids as those that are pre-planned and negotiated.

These Grids are typically made up of servers, clustered computers and super-

computers. Dedicated teams of people or organization are also usually tasked

to ensure the availability of these resources. This results in high expectation of

the resources being on-line and the Grid capacity is usually known. Such GCEs

are usually results of high level collaborations between institutes. Examples of

54

such Grids includes the UK e-Science Grid5, the Asia-Pacific Grid6 as well as

the NC BioGrid7. We assume the availability of such grids to be 90%, barring

certain maintenance down times.

Desktop Grids operates in an environment that are more dynamic and vol-

untary. Such Grids operate very much in a peer-to-peer fashion, where resources

join or leave the Grid without any pre-arranged schedule. Such Grids are typi-

cally made up of desktops or portable devices and are participated by users who

do not usually know who else is also providing computation capability to the

cause. The true capacity of such a GCE is thus hard to obtain at any instance

in time as these computational resources can go offline regardless of the job

state allocated. Examples of such Grids includes Seti@Home8, Korea@Home9

and Folding@Home10. Availability values of such grids can fluctuate given the

type of users participating in the GCE. In our case, we assume that participants

of such GCEs would be home users who power off their resources at the end

of each day. We are unable to simulate levels of availability lower than 30%

due to the large amount of simulation time required. however, we feel that 30%

availability serves as a good estimate of the performance levels of the algorithms

in such a GCE.

Hybrid Grids are Grids that we envision the future of Grids to become.

This is an environment where both Dedicated and voluntary resources will co-

exist within a large computing resource pool, allowing jobs to make use of these

computing resources where required. we take the capacity of such GCEs to be

at 50%.

In our simulations, each of these type of execution environments are tagged

with environmental availability values such that the overall availability values

are maintained. This however does not dictate the state of resources at any

point of time.
5http://www.grid-support.ac.uk/
6http://www.apgrid.org/
7http://biogrid.icm.edu.pl/
8http://setiathome.ssl.berkeley.edu/
9http://www.koreaathome.org/

10http://folding.stanford.edu/

55

The Run-Factor of the simulated environments describes the ratio of the

maximum simulated runtime of a job to the mean MTTF values. As workload

models usually generates workloads that have much lesser jobs requiring very

long run times, this value is used to induce situations where there will be a high

volume of job failures in the environment. It is noted that we do not present

the simulation results when the Run-Factor ratio is 1 as this will result in the

maximum simulated runtime of the job to be equal to that of the MTTF . In

which case, we observe no job failures in many of our simulations and is thus

unable to study the effects of the various pro-active failure handling schemes.

4.2 MRS Results, Analysis and Discussions

Based on the system design in Section 4.1, the GCE is simulated in order to

ascertain the performance of MRS.

We compare our MRS with the Backfilling strategy (BACKFILL) [27, 24]

and a job Replication (REP) strategy [44], which is similar to that used in

SETI@Home [28]. We make use of similar Job Sharing and Multi-site environ-

ment as described earlier such that the intrinsic advantages of the algorithms

can be elicited and quantified.

The workload model provided by[25] was used as the workload input. The

workload profile is shown in Figure 10. The metrics described in section 4

were used to quantify the performance and comparison. The results of our

experiments are summarized in Table (2) and figure (11). The significance of

these results are discussed below.

In the simulation model, jobs are allowed to arrive in a stream over a span of

3 days. The various job requirements are modeled by the information provided

in [29, 25] and are injected into the simulation model. Data requirements are also

additionally generated in order to simulate the need for data to be transported

from one location to another in order for a successful computation to take place.

Average Wait Time (AWT) is the average amount of time a job waits in the

queue before being executed. This starts from the point of submission to the

56

Figure 10: Workload model profile provided by [25]

Figure 11: Normalized comparison of simulation to Backfill Algorithm

57

AWT (Time units) QCT (Time units) AGU (%)
BACKFILL 2579.43 187302.22 57.78

REP 1500.40 320362.16 63.08
MRS 1266.71 152810.98 74.46

Tabulated Experimental Result

AWT (%) QCT (%) AGU (%)
REP 41.83 (71.04) 9.16
MRS 50.89 18.41 28.86

Percentage Improvement over BACKFILL

AWT (%) QCT (%) AGU (%)
BACKFILL (71.91) 41.53 (8.40)

MRS 15.58 52.30 18.04

Percentage Improvement over REP

Table 2: Experimental results comparing BACKFILL, REP and MRS

point when the job begins its transmission to the execution node. In figure 11,

we have normalized all the performance indicators to the BACKFILL algorithm

in order to look at the performance differences of the experiments.

It was noted that in terms of AWT, both REP and MRS significantly out-

performs BACKFILL by 40% and 50% respectively, when run in a distributed

environment. This is due to the fact that the backfill algorithm does not allo-

cate jobs in consideration of the data distribution time. The fact that jobs are

streaming into the system also accounts for the inability for the algorithm to be

able to obtain a good “packing” schedule where resources will be optimized. We

observe that the AWT of REP is far better than BACKFILL. This is attributed

to the fact that as a job gets replicated, the likelihood of being allocated to

a faster resource or bandwidth increases. This is however non-optimal as it

was achieved without making full use of the information available in the execu-

tion environment. This non-optimality is verified by the fact that MRS is able

to achieve an even better AWT by making use of inter-resource relationships

defined within its indices.

58

From Table 2, we can also clearly see that the utilization for BACKFILL is

the lowest in all the experiments. REP and MRS exhibits increasing levels of

utilization which accounts for a shorter AWT. However, it may be noted that

in the replication algorithm, every job is essentially submitted twice in order to

achieve better performance. This replication potentially hinders the execution

of other jobs that might require more CPUs in the GCE. This can also artificially

inflate the utilization of the GCE. This is clear from the fact that an increase

in utilization using the REP strategy does not lead to any improvement in the

QCT. It has, instead, induced a detriment to the GCE by almost 70% when

compared to BACKFILL. In contrast, we can see an improvement of 18% when

comparing the utilization between MRS and REP. This is also directly reflected

in the overall QCT which has improved by 52%.

From our experiments, we observe that replication can lead to a degradation

of performance when the entire queue is considered. This is clearly reflected

in figure 11, where REP is performing 71% slower in QCT when compared to

BACKFILL. It is to be noted that the time taken for a job to complete its

execution is inclusive of the execution overheads and latencies that is associated

with data and computation communications.

In contrast to BACKFILL and REP, our simulations have shown that MRS

has been able to achieve a 50% improvement AWT, an 18% improvement over

QCT and a 29% improvement in AGU. This is due to the fact that MRS makes

use of comparative measures on the benefits of allocation to each node. This

is inherent to the algorithm during the process of Virtual Map creation. A

lower AWT is very much due to a good allocation decision of the resources

when MRS is presented with a queue of jobs. This allows for more jobs to be

allocated per unit time, which is reflected clearly in the 18% improvement in

QCT over BACKFILL. This is achieved without the over allocation of resources

as in REP, giving MRS a 52.3% improvement in QCT when compared to a REP.

The matching of resources using the computation and data indexes, also results

in a much higher utilization, dispatching jobs to nodes that are able to satisfy

59

the jobs while intelligently deciding which jobs to keep local and which jobs to

dispatch.

In view of the workload model used, we observe that many of the jobs in

the simulation model requires between 1-64 GFLOPs. A majority of the jobs

also require run times less than half the longest running job. On comparing this

workload model that we are using with those from San Diego Super-Computing

Center (SDSC), Lawrence Livermore National Laboratory (LLNL) and Kungliga

Tekniska hogkölan - Royal Institute of Technology (KTH), we find that our

workload profile exhibited close similarities when compared to [29] and [30]. This

provides further assurance that MRS is able to provide advantages in scheduling

when applied to other common workload.

In general, it is observed that MRS is able to render a performance that is

much suited for scheduling resources over a GCE.

4.3 Pro-active Failure Handling Results, Analysis and Dis-

cussions

Based on the setup in table 1, we setup a simulated GCE to generate resource

failures to achieve the required capacities. The results are shown in Figure 12,

14 and 13. We normalize11 the results to that of the unmodified BF algorithm

in order simplify the comparisons between the various strategies.

4.3.1 Performance of the unmodified algorithms

From the results, it is noted that there is always an improvement in JPR when

comparing the unmodified version of MRS to that of BF within all three simu-

lated environments. In DGs, we also note that the JPR of MRS is about 20-30%

better than that of BF. This is consistent with our results presented in [45].

We also note that while REP might not always provide a higher JPR, its

JFRs is consistently better than that of BF in all simulated environments. This

again, is consistent with our expectation that replicating jobs should provide a
11Note that the suffix of “N” before JPR, JFR and JRR represents “Normalized”

60

(a) DG Environment with Run Factor 0.1

(b) HG Environment with Run Factor 0.1

(c) EG Environment with Run Factor 0.1

Figure 12: Simulation results for DG under different Run-Factors

61

(a) DG Environment with Run Factor 0.001

(b) HG Environment with Run Factor 0.001

(c) EG Environment with Run Factor 0.001

Figure 13: Simulation results for EG under different Run-Factors

62

(a) DG Environment with Run Factor 0.01

(b) HG Environment with Run Factor 0.01

(c) EG Environment with Run Factor 0.01

Figure 14: Simulation results for HG under different Run-Factors

63

greater likely-hood of job success. However, it is clear that this is done at the

expense of throughput due to the effectively reduced capacity of the GCE due

to replication.

It is noted JRRs in all simulated environments fluctuates. This is due to the

fact that the changes in JPR and JFR can result in instances whereby there are

more resources in the GCE at different instances in time. However, it is clear

from the comparisons of the unmodified algorithms that both REP and MRS

outperforms BF in terms of JFR and JPR. We also observe a much lower JRR

with MRS compared to the other strategies. This can be due to the increase in

throughput, thereby allowing more resources to be available in a shorter period

of time.

4.3.2 Performance of the modified algorithms in a DG environment

From the graphs shown in Figures 12, we observe that under a DG environment,

BF is not able to derive much benefit from NAA. Making use of SAA or NSA

type strategies however provides at least a 40% improvement in JFR and possi-

bly increasing JPRs by up to 30% when Run-Factors are low. This shows that

there is definite improvement in the assurance of job completion when pro-active

strategies are introduced.

The benefit of pro-active methods are also observed when introduced to the

REP algorithms. In high Run-Factor situations, it is observed that although

NAA type strategies are not able to reduce JRRs perhaps due to mistaken

estimates in capacities in the GCE, the SAA strategy is able to show better

performance through lowered JRRs values under this circumstances. This is

due to better management in resources, allowing more jobs to run before the

simulation terminates. However, under Run-Factors of 0.01 and 0.001, we ob-

serve that the NAA type strategy performs marginally better than SAA. This

can be due to the perceived changes in resource states that is not predicted

accurately in situations where Run-Factors are 0.1. NSA, in general, derives its

performance gains as a combination of SAA and NAA. This can be observed

64

in the marginal improvements in the NSA strategy compared to either SAA or

NAA. This is once again consistent to the additive nature of predictive pro-

active failure handling strategies to other forms of failure handling techniques.

In the operation of 3D-MRS in DGs, we observe little benefit in the use

of all three pro-active failure handling techniques. In fact, in high Run-Factor

situations, the NAA strategy causes a higher JFR which is likely due to errors

in node availability prediction. This lack in performance improvement can be

due to the much higher throughput exhibited in the MRS algorithm compared

to both BF and REP. This allows the job queue to be processed rather quickly

before the resources exhibits failure. This, therefore leads to the lack of im-

provement from the original JFR and JRR values as it was already allocating

the resources to the jobs in a near optimal fashion.

In general, we find that under a DG environment, the inclusion of SAA,

NAA or NSA into the selected algorithms provides marginal performance im-

provement over the original. While a decrease in JFR is observed, depending

on the requirement of the GCE, one might feel that these marginal performance

gain might not justify the inclusion of a pro-active strategy, especially the NAA

or NSA strategies. However, in view of the complexity of implementation, we

suggest that strategies operating within DG environments to include SAA which

is both simple to implement and invokes negligible overheads due to the filtering

nature of its strategy. This will allow the strategy to continue providing inherent

advantages of the algorithm while maintaining the ability to cope with changes

in the GCE capacity. Of the implementations compared, it was concluded that

the the modified MRS provided the best balance in performance and prevention

of job failures while utilizing the SAA modification.

4.3.3 Performance of the modified algorithms in a EG environment

In an EG environment, it is noted that resources join or leave the GCE fairly

often resulting in an overall decrease in GCE capacity even though the resources

participating can be large. In the normalized results, it was observed that REP

65

and 3D-MRS continues to provide improvements from BF, exhibiting noticibly

lower JFR. It was also noted that JRRs in REP strategies are much higher.

This is due to the perceived capacity of the GCE when considering the result of

the GAE, causing the SAA strategy in REP to reject jobs that are possibly over

requesting resources from the environment. The NAA strategy when applied in

REP resulted in less JRRs due to the lack of pre-filter of jobs, but exhibits a

definitely higher JFR as jobs can fail due to mis-predictions as well as changes

in resource states.

These detriments, however, are not observed in 3D-MRS. 3D-MRS consis-

tently exhibits higher JPR, lowered JFRs and JRRs. In the cases where JFRs of

the modified MRS strategies exceeds that of REP, the JPRs of these algorithms

always exhibits a much higher value. This signifies that the strategy is able

to adapt itself, sacrificing some jobs in view that the entire job queue can be

processed faster.

There is however, an exception of the 3D-MRS strategy modified with NAA

that exhibited very poor JPR values when the Run-Factor is at 0.1. This can be

due to mistakes in resource state prediction due to the volatility of the resources.

However, it was found that in such cases, SAA modifications provides very good

results, where the jobs that are executed experienced either no failure, or a 50%

improvement over the NAA strategy. Similar improvements were also observed

in the NSA strategies where there is also a slightly reduced rejection rate of 0%-

10% with the aid of node prediction occurring after filtering from SAA. This is

observed in all Run-Factors for 3D-MRS.

In such EG environments, we therefore conclude that making use of 3D-MRS

with the modification of NSA provided the most reasonable performance while

reducing JFRs. This allows greater assurance of job completion when executing

in a volatile environment such as a EG.

66

4.3.4 Performance of the modified algorithms in a HG environment

It is noted that in HG environments, the performance of the modified BF, REP

and 3D-MRS strategies falls intermediate to the extremes represented by both

DG and EG environments. It is noted that 3D-MRS with NSA continues to

provide the best balance in terms of JPR while exhibiting the lowest JFRs. At

the same time, JRR is kept to a minimum. Observation of the simulation results

clearly shows the advantage of introducing the SAA, NAA or the NSA strategy

under different GCEs, workloads as well as algorithms. However, in general we

feel that the NSA algorithm provides the best balance in performance while

minimizing job failures in all cases.

The above results offers conclusive evidence that 3D-MRS is able to exhibit

effectiveness when handling failures pro-actively, while performing optimally un-

der various operating environments, when compared to backfill and replication

algorithms.

67

5 Conclusion

In this thesis, we have proposed a novel distributed resource scheduling al-

gorithm capable of handling several resources to be catered among jobs that

arrive at a Gird system. Our proposed algorithm, referred to as Multi-Resource

Scheduling (MRS) algorithm, takes into account the different resource require-

ments of different tasks and shown to obtain a minimal execution schedule

through efficient management of available Grid resources. We have proposed

a model in which the job and resource relations are captured and are used to

create an aggregated index. This allows us to introduce the concept of virtual

map that can be used by the scheduler to efficiently determine a best fit of re-

sources for jobs prior to execution. We also introduced the concept of Resource

Potential to identify inter-relations between resources such as bandwidth and

data. This allows us to identify sites that has least execution overheads with

respect to a job.

In order to quantify the performance, we have used performance measures

such as average job wait times, queue completion times, and average resource

utilization factor, respectively. We considered practical workload models that

are used in real-life systems to quantify the performance of MRS. Performance

of MRS has been compared with conventional backfill and replication algo-

rithms that are commonly used in a GCE. Workload models based on recent

literature[25] was also used. Our experiments have also conclusively elicited

several key performance features of MRS with respect to the backfill and repli-

cation algorithms, yielding performances improvements up to 50% on some per-

formance measures.

We have also presented an extension of MRS (3D-MRS) with-in three forms

of pro-active failure handling strategies, mainly (1) the Site availability based

allocation strategy (SAA-strategy), (2) the Node availability based allocation

strategy (NAA-strategy) and (3) the Node-Site availability based allocation

strategy (NSA-strategy). We simulated three different types of GCEs in or-

68

der to try to capture different possible types of resource capacities in Grids.

The backfill and replication algorithms were modified and used to allow us to

observe the advantages of the different pro-active strategies. 3D-MRS, which

is an extension to the MRS strategy presented in [45] is also presented with

integration to the various pro-active failure handling strategies. The results

clearly shows the continued advantage in utilizing the MRS model in resource

allocation, and clearly demonstrates the ability of the MRS strategy to be able

to extend itself and cope with failure.

In our experiments, we have been able to show that the inclusion of any

type of pro-active handling mechanism is able to cause a significant improve-

ment above conventional algorithms. Pro-active strategies also has an additive

effect, which is observed in the simulations involving the replication algorithm,

where original advantages of the strategy is preserved. Our simulations has also

shown that including NSA strategies into various resource allocation strategies

is able to demonstrate improvements where by job failures are significantly re-

duced. The superior performance of 3D-MRS with the failure handling strategies

in the simulations also shows conclusive evidence that the resource allocation

strategy is able to handle failures effectively and optimally under various oper-

ating environments, when compared to backfill and replication algorithms.

The results also conclusively shows that the inclusion of pro-active failure

handling strategies is able to reduce job failures during runtime. The ability to

predict the resource states thus paves the way for higher assurance of a success-

ful job execution when jobs are dispatched into a GCE. The contributions in

this thesis therefore conclusively demonstrate that pro-active failure handling

strategies can lead to better Grid scheduler performance especially in a GCE

experiencing any form of failure. The extension of the MRS allocation strat-

egy also continues to perform much better when compared to other common

algorithms in the GCE.

69

6 Future works

Below we briefly discuss on some possible immediate extensions to the problem

we have addressed in this paper. Having shown the effectiveness of MRS in

a conventional scheduling environment, and the successful extension of MRS

to encompass failure information, thus achieving better fault tolerance, we be-

lieve that MRS can be even further extended to include more dimensions. For

instance, using the virtual map technique, it is possible that other parameters

such as, Quality-of-Service [31, 32], economic considerations [33] can be included

into the model by simply extending the number of dimensions of consideration.

These new considerations and how it interacts with other parameters have to be

studied carefully to quantify the inter and intra-resource relationship and then

represented into an aggregation equation which can be used in MRS. It would

be interesting to consider expanding our simulation environment to include la-

tency information and not assume the direct relation between bandwidth and

latency. Lastly, it would be more interesting to invent advanced techniques of

job arrangement and fragmentation of jobs to thoroughly exploit the idling re-

sources during the execution of jobs, especially when job queues are insufficient

to fully utilize a Grid computing environment.

70

References

[1] Norm Snyder, “IBM Linux Clusters”, http://linux.ittoolbox.com/documents/document.asp?i=2042,

2002.

[2] IBM, “Cluster Servers”, http://www-1.ibm.com/servers/eserver/clusters/,

2004.

[3] Hewlett Packard, “High Performance Technical Computing”,

http://www.hp.com/techservers, 2004.

[4] Sun Microsystems, “High Performance Technical Computing”,

http://www.sun.com/solutions/hpc, 2004.

[5] I. Foster and C.Kesselman, “The Grid: Blueprint for a new Computing

Infrastructure (2nd Edition)”, Morgan-Kaufman, 2004.

[6] V. Subramani, R. Kettimuthu, S. Srinivasan, and P. Sadayappan, “Dis-

tributed Job Scheduling on Computational Grids Using Multiple Simulta-

neous Requests”, In the Proceedings of 11th IEEE International Symposium

on High Performance Distributed Computing HPDC-11 20002 (HPDC?02),

Edinburgh, Scotland, July 24-26, 359-368, 2002.

[7] L. Zhang, “Scheduling algorithm for Real-Time Applications in Grid En-

vironment”, In the Proceedings on IEEE International Conference on Sys-

tems, Man and Cybernetics, USA, Vol. 5, 2002.

[8] K. G. Shin and Y. Chang, “Load sharing in distributed real-time sys-

tems with state change broadcasts”, IEEE Transactions on Computers,

38(8):1124–1142, August 1989.

[9] W. Leinberger, G. Karypis, and V. Kumar, “Job Scheduling in the presence

of Multiple Resource Requirements”, Proceedings of the IEEE/ACM SC99

Conference, Portland , Oregon, USA, Nov 13-18, pp. 47-48, 1999.

[10] E. Santos-Neto, W. Cirne, F. Brasileiro, and A. Lima, “Exploiting Repli-

cation and Data Reuse to Efficiently Schedule Data-intensive Applications

71

on Grids”, Proceedings of the 10th Workshop on Job Scheduling Strategies

for Parallel Processing, June 2004.

[11] S. Venugopal, R. Buyya, and L.Winton, “A Grid Service Broker for

Scheduling Distributed Data-Oriented Applications on Global Grids”,

Technical Report, CoRR cs.DC/0405023: 2004. This can be located at:

http://www.gridbus.com

[12] R. Wolski and G. Obertelli, “Network Weather Service”,

http://nws.cs.ucsb.edu, 2003.

[13] [13] K. Ranganathan and I.Foster, “Decoupling Computation and Data

Scheduling in distributed Data-Intensive Applications”, In the Proceedings

of 11th IEEE International Symposium on High Performance Distributed

Computing HPDC-11 (HPDC’02), Edinburgh, Scotland, July 24-26, 352-

358, 2002.

[14] N. Karonis, B. Toonen, and I. Foster, “MPICH-G2: A Grid-Enabled Im-

plementation of the Message Passing Interface”, Journal of Parallel and

Distributed Computing (JPDC), Vol. 63, No. 5, 551-563, May 2003.

[15] A. Rajasekar, M. Wan, R. Moore, W. Schroeder, G. Kremenek, A. Jagath-

eesan, C. Cowart, B. Zhu, S-Yen Chen, and R. Olschanowsky, “Storage

Resource Broker - Managing Distributed Data in a Grid”, Computer So-

ciety of India Journal, Special Issue on SAN, Vol. 33, No. 4, 42-54, Oct

2003.

[16] Parallel Workload Archive: Models, http://www.cs.huji.ac.il/labs/parallel/workload/models.html

[17] K.-L.Park, H.-J. Lee, O.-Y. Kwon, S.-Y. Park, H.-W. Park and S.-D. Kim,

“Design and Implementation of a dynamic communication MPI library for

the grid”, International Journal of Computers and Applications, ACTA

Press, Vol 26, No. 3, pages 165-171, 2004.

72

[18] F. Azzedin and M. Mahewaran, “Integrating Trust into Grid Resource Man-

agement Systems”, Proc. ICPP 2002

[19] H. Casanova, A.legrand, D. Zagorodnov, “Heuristics for Scheduling Param-

eter Sweep Applications in Grid Environments”, 9th Heterogeneous Com-

puting workshop 2000

[20] K. Taura and A. Chien, , “A Heuristic Algorithm for Mapping Communi-

cating Tasks on Heterogeneous Resources”, 9th Heterogeneous Computing

workshop 2000

[21] K. N. Vijay, L. Chuang, L. Yang and J. Wagner, “On-line Resource Match-

ing for Heteroeneous Grid Environments”, Cluster and Computing Grid,

Cardiff, United Kingdom, 2005

[22] Y. Li, and M. Mascagni, “Improving Performance via Computational Repli-

cation on a Large-Scale Compuational Grid”, IEEE/ACM CCGRID2003,

Tokyo, 2003.

[23] Open Grid Service Architecture Data Access and Integration,

http://www.ogsadai.org.uk/

[24] Ahuva W. Mu’alem and Dror G. Feitelson, “Utilization, Predictability,

Workloads, and User Runtime Estimates in Scheduling the IBM SP2 with

Backfilling”, IEEE Transactions on Parallel & Distributed Systems, 12(6),

pp. 529-543, June 2001.

[25] B. Song, C. Ernemann and R. Yahyapour, “User Group-based Workload

analysis and Modelling,” Cluster and Computing Grid Workshop 2005,

Cardiff United kingdom, 2005

[26] C. Ernemann, V. Hamscher, U. Schwiegelshohn, R. Yahyapour, “On Ad-

vantages of Grid Computing for Parallel Job Scheduling,” Proceedings of

the 2nd IEEE/ACM International Symposium on Cluster Computing and

the Grid, 2002.

73

[27] V. Hamscher, and U. Schwiegelshohn, and A. Streit, "Evaluation of Job-

Scheduling Strategies for Grid Computing", In the Proceedings of 1st The

1st IEEE/ACM International Workshop on Grid Computing, Brisbane

Australia, 2000.

[28] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Lebofsky,

“SETI@home-Massively distributed computing for SETI,” Computing in

Science and Engineering, v3n1, 81, 2001.

[29] U. Lublin and D. G. Feitelson, "The Workload on Parallel Supercomputers:

Modeling the Characteristics of Rigid Jobs." Technical Report 2001-12,

School of Computer Science and Engineering, The Hebrew University of

Jerusalem, Oct 2001.

[30] J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, and J. Riodan, “Mod-

eling of Workload in MPPs” Job Scheduling Strategies for Parallel Process-

ing, D. G. Feitelson and L. Rudolph (Eds.), Springer-Verlag, Lecture Notes

in Computer Science, vol. 1291, pp. 95-116, 1997.

[31] X.S. He, X.H. Sun, and G. von Laszewski, “QoS guided min-min heuristic

for Grid Task Scheduling”, Journal of Computer Science and Technology,

Editorial Universitaria de Buenos Aires, Argentina, Vol 18, Issue 4, 442-

451, July 2003.

[32] A. Takefusa, H. Casanova, S. Matsuoka, and F. Berman. “A study of dead-

line scheduling for client-server systems on the computational grid”. In Pro-

ceedings of 10th IEEE International Symposium on High Performance Dis-

tributed Computing(HPDC-10), pages 406-415, 2001.

[33] R. Buyya, M. Murshed, D. Abramson, and S. Venugopal, “Scheduling Pa-

rameter Sweep Applications on Global Grids: A Deadline and Budget Con-

strained Cost-Time Optimisation Algorithm”, International Journal of Soft-

ware: Practice and Experience, Wiley Press, USA. This document can also

be found at: http://www.gridbus.org/~raj/cv.html#papersj

74

[34] Platform Computing, http://www.platform.com/Products/Platform.LSF.Family/

[35] Sun Grid Engine, http://gridengine.sunsource.net/

[36] United Devices, http://www.ud.com/index.php

[37] XGrid, http://www.apple.com/server/macosx/features/xgrid.html

[38] R. Medeiros, W. Cirne, F. Brasileiro and J. Sauve, “Faults in Grids: Why

are they so bad and What can be done about it?,” in the proceedings of the

Fourth international Workship on Grid Computing (GRID’03), 2003.

[39] M. Litzkow, M. Livny and M. Mutka, “Condor - A hunter of Idle Worksta-

tions,” in the Proceedings of the 8th International Conference of Distributed

Computing Systems, pp. 104-111, June 1988.

[40] V. Subramani, R. Kettimuthu, S. Srinivasan and P. Sadayappan, “Dis-

tributed Job Scheduling on Computational Grids Using Multiple simulta-

neous Requests”, in the Proceedings of 11th IEEE International Symposium

on High Performance Distributed Computing HPDC-11, 2002 (HPDC’02),

Edinburgh, Scotland, July 24-26, 359-368, 2002

[41] H. M. Lee, S. H. Chin, J. H. Lee, D. W. Lee, K. S. Chung, S. Y. Jung and

H. C. Yu, “A Resource Manager for Optimal Resource Selection and Fault

Tolerance Service in Grids”, in the Proceedings of 4th IEEE International

Symposium on Cluster Computing and the Grid, Chicago, Illinois, USA,

2004.

[42] S. Choi, M. Baik and C. S. Hwang, “Volunteer Availability based Fault Tol-

erant Scheduling Mechanism in Desktop Grid Computing Environment”,

in the Proceedings of the 3rd IEEE International Symposium on Net-

work Computing and Applications, Boston, Massachusetts, August 30th

- September 1st, pp. 366-371, 2004.

75

[43] Benjamin Khoo, Bharadwaj Veeravalli, "Cluster Computing and Grid 2005

Works in Progress: A Dynamic Estimation Scheme for Fault-Free Schedul-

ing in Grid Systems," IEEE Distributed Systems Online, vol. 6, no. 9, 2005.

[44] Y. Li and M. Mascagni, “Improving Performance via Computational

Replication on a Large-Scale Computational Grid”, In the Proceedings of

IEEE/ACM International Symposium on Cluster Computing and the Grid

(IEEE/ACM CCGRID2003), Tokyo, 2003.

[45] Benjamin Khoo B.T, Bharadwaj Veeravalli, Terence H. and Simon S. C. W,

“A Co-ordinate Based Resource Allocation Strategy for Grid Environments,

In the Proceedings of the Sixth IEEE International Symposium on Cluster

Computing and the Grid , CCGrid 2006, Singapore, 16-19 May, pp561-567,

2006

76

